Suppr超能文献

一种使用机器学习工具预测片剂制剂断裂力和崩解的实用框架。

A Practical Framework Toward Prediction of Breaking Force and Disintegration of Tablet Formulations Using Machine Learning Tools.

作者信息

Akseli Ilgaz, Xie Jingjin, Schultz Leon, Ladyzhynsky Nadia, Bramante Tommasina, He Xiaorong, Deanne Rich, Horspool Keith R, Schwabe Robert

机构信息

R&D, Pharmaceutical Development, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877.

R&D, Pharmaceutical Development, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877.

出版信息

J Pharm Sci. 2017 Jan;106(1):234-247. doi: 10.1016/j.xphs.2016.08.026. Epub 2016 Oct 27.

Abstract

Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process.

摘要

实现质量源于设计的模式需要具备将材料特性和工艺变量与可测量的产品性能属性进行定量关联的能力。传统的通过测试来确定片剂破碎力和崩解时间的质量控制方法通常涉及破坏性测试,这会消耗大量的时间和人力,并且提供的信息有限。材料表征、统计分析和机器学习方面的最新进展提供了多种工具,这些工具有可能在药品开发中开发出无损、快速且准确的方法。在这项工作中,开发了一种使用无损超声和机器学习工具来预测片剂配方破碎力和崩解时间的方法。该模型的输入变量包括配方的固有特性以及在制造过程中影响片剂的外部工艺变量。该模型已应用于使用少量活性药物成分和原型配方设计来预测破碎力和崩解时间。所提出的新方法朝着基于对配方和工艺开发过程中常见材料性能的洞察来合理设计稳健药品迈出了一步。它还可能有助于加快药品开发时间表,减少活性药物成分的使用,同时提高整个过程的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验