Zampieri Muriel, Tommasone Guillermina, Morel Luciana, Luque Guillermina Leticia
Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina.
Instituto de Física Enrique Gaviola (IFEG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.
Polymers (Basel). 2025 Jan 10;17(2):164. doi: 10.3390/polym17020164.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues. In anode protection, cellulose-based composites and coatings mitigate dendrite formation and improve lithium-ion diffusion, extending cycle life and enhancing safety. As separators, cellulose materials exhibit high ionic conductivity, thermal stability, and excellent wettability, effectively suppressing the polysulfide shuttle effect and maintaining electrolyte stability. For the cathode, cellulose-derived carbon frameworks and binders improve sulfur loading, conductivity, and active material retention, resulting in higher energy density and cycling stability. This review highlights the diverse roles of cellulose in Li-S batteries, emphasizing its potential to enable sustainable and high-performance energy storage. The integration of cellulose into Li-S systems not only enhances electrochemical performance but also aligns with the goals of green energy technologies. Further advancements in cellulose processing and functionalization could pave the way for its broader application in next-generation battery systems.
锂硫(Li-S)电池因其高能量密度、成本效益和环境友好性,成为下一代储能的理想候选者。然而,它们的商业化受到多硫化物穿梭效应、锂枝晶生长以及硫阴极低电导率等挑战的阻碍。纤维素作为一种天然、可再生且用途广泛的生物聚合物,已成为解决这些问题的多功能材料。在阳极保护方面,基于纤维素的复合材料和涂层可减轻枝晶形成并改善锂离子扩散,延长循环寿命并提高安全性。作为隔膜,纤维素材料具有高离子导电性、热稳定性和出色的润湿性,能有效抑制多硫化物穿梭效应并保持电解质稳定性。对于阴极,纤维素衍生的碳骨架和粘合剂可提高硫负载量、导电性和活性材料保留率,从而实现更高的能量密度和循环稳定性。本综述重点介绍了纤维素在锂硫电池中的多种作用,强调其实现可持续和高性能储能的潜力。将纤维素集成到锂硫系统中不仅能提高电化学性能,还符合绿色能源技术的目标。纤维素加工和功能化的进一步进展可为其在下一代电池系统中的更广泛应用铺平道路。