Chen Ya-Yi, Ma Tien-Li, Chang Pei-Jung, Chiou Yuh-Jing, Chang Wei-Min, Weng Ci-Fen, Chen Chin-Yi, Chang Yu-Kang, Lin Chung-Kwei
Department of Stomatology, Tung's Taichung Metro Harbor Hospital, Taichung 435, Taiwan.
Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
Polymers (Basel). 2025 Jan 14;17(2):187. doi: 10.3390/polym17020187.
Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation. Various percentages of strontium (Sr) doping were examined to improve bioreactivity, biological response, and bone formation, with 3SMBG (3 mol% Sr) showing the highest specific surface area. In vitro biocompatibility tests revealed HA formation on all glass surfaces after immersion in simulated body fluid (SBF), indicated by sheet-like HA morphologies, the presence of PO and CO functional groups, and the amorphous structure along with SrCO crystalline phases corresponding to HA and Sr-HA structures. Sr doping resulted in delayed initial degradation and sustained release of Sr, achieving over 95% cell viability. Surfactant-induced mesoporous structure and Sr incorporation synergistically enhance osteocyte induction and formation in vitro. These findings suggest that Sr-doped MBG, particularly with P123-assisted Sr/Ca substitution, optimizes the material's properties for advanced bone regenerative applications.
介孔生物活性玻璃(MBG)是一种先进的生物材料,因其在骨再生工程中的应用而广受认可。本研究使用非离子表面活性剂Pluronic P123作为造孔剂,通过简便的溶胶-凝胶法合成了一种MBG粉末(80摩尔% SiO、5摩尔% PO和15摩尔% CaO)。MBG形成有助于羟基磷灰石(HA)形成的生物活性表面,Pluronic P123的存在增加了表面积并促进了HA成核。研究了不同百分比的锶(Sr)掺杂以改善生物反应性、生物学反应和骨形成,其中3SMBG(3摩尔% Sr)表现出最高的比表面积。体外生物相容性测试表明,浸泡在模拟体液(SBF)中后,所有玻璃表面均形成了HA,表现为片状HA形态、PO和CO官能团的存在、无定形结构以及对应于HA和Sr-HA结构的SrCO结晶相。Sr掺杂导致初始降解延迟和Sr的持续释放,实现了超过95%的细胞活力。表面活性剂诱导的介孔结构和Sr掺入协同增强了体外骨细胞诱导和形成。这些发现表明,Sr掺杂的MBG,特别是采用P123辅助的Sr/Ca替代,优化了材料性能,适用于先进的骨再生应用。