De Soricellis Chiara, Amante Chiara, Russo Paola, Aquino Rita Patrizia, Del Gaudio Pasquale
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Pharmaceutics. 2025 Jan 17;17(1):129. doi: 10.3390/pharmaceutics17010129.
BACKGROUND/OBJECTIVES: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug. METHODS: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis. RESULTS: Particles mean diameter (d) 316 and 452 nm, depending on drug-loaded cargo as Curcumin-loaded PLGA nanoparticles demonstrated high encapsulation efficiency, assessed via HPLC analysis, stability, and controlled release profiles. In vitro studies revealed a faster release for lower drug loadings (90% release in 6 h) compared to sustained release over 7 days for higher-loaded nanoparticles, attributed to polymer degradation and drug-polymer interactions on the surface of the particles, as confirmed by FTIR analyses. CONCLUSIONS: These findings underline the potential of this scalable technique for biomedical applications, offering a versatile platform for designing drug delivery systems with tailored release characteristics.
背景/目的:本研究首次探究了采用造粒技术结合溶剂蒸发法制备纳米和亚微米级聚乳酸-羟基乙酸共聚物(PLGA)颗粒以有效递送活性药物成分的情况。姜黄素(CCM),一种归类于生物药剂学分类系统(BCS)第IV类的疏水性化合物,被选为模型药物。 方法:对包括聚合物浓度、溶剂类型、喷嘴尺寸和表面活性剂水平在内的关键工艺参数进行优化,以获得通过动态光散射(DLS)分析确定的具有窄尺寸分布的稳定颗粒。 结果:颗粒平均直径(d)为316和452纳米,这取决于载药情况,因为载姜黄素的PLGA纳米颗粒通过高效液相色谱(HPLC)分析显示出高包封效率、稳定性和控释特性。体外研究表明,与高载药量纳米颗粒7天的缓释相比,低载药量时释放更快(6小时内释放90%),这归因于聚合物降解以及颗粒表面的药物-聚合物相互作用,傅里叶变换红外光谱(FTIR)分析证实了这一点。 结论:这些发现强调了这种可扩展技术在生物医学应用中的潜力,为设计具有定制释放特性的药物递送系统提供了一个通用平台。
J Nanobiotechnology. 2012-8-31
J Agric Food Chem. 2011-8-8
Colloids Surf B Biointerfaces. 2012-6-28
J Funct Biomater. 2016-8-2
Pharmaceutics. 2022-12-22
Int J Mol Sci. 2022-12-24
Nanomaterials (Basel). 2022-12-19
Small. 2022-9