Suppr超能文献

在药物研发中使用网络合作伙伴进行靶点识别时需谨慎。

Caution when using network partners for target identification in drug discovery.

作者信息

Tan Dandan, Chen Yiheng, Ilboudo Yann, Liang Kevin Y H, Butler-Laporte Guillaume, Richards J Brent

机构信息

Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; 5Prime Sciences, Montréal, QC, Canada.

出版信息

HGG Adv. 2025 Apr 10;6(2):100409. doi: 10.1016/j.xhgg.2025.100409. Epub 2025 Jan 23.

Abstract

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicate that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of US Food and Drug Administration-approved drugs had targets with direct human genetic evidence. By expanding target identification to include protein network partners-molecules in physical contact-the proportion of drug targets with genetic evidence support increased to two-thirds. However, the efficacy of using these network partners for target identification was not formally tested. To address this, we tested the approach on a list of robust positive control genes. We used the IntAct database to find physically interacting proteins of genes identified by exome-wide association studies (ExWASs), genome-wide association studies (GWASs) combined with a locus-to-gene mapping algorithm called the Effector Index, and Genetic Priority Score (GPS), which integrated eight genetic features with drug indications from the Open Targets and SIDER databases. We assessed how accurately including interacting genes with the ExWAS-, Effector Index-, and GPS-selected genes identified positive controls, focusing on precision, sensitivity, and specificity. Our results indicated that although molecular interactions led to higher sensitivity in identifying positive control genes, their practical application is limited by low precision. Expanding genetically identified targets to include network partners using IntAct did not increase the likelihood of identifying drug targets across the 412 tested traits, suggesting that such results should be interpreted with caution.

摘要

识别新的、高产出的药物靶点具有挑战性,且往往导致高失败率。然而,最近的数据表明,利用人类遗传证据来识别和验证这些靶点可显著提高药物开发成功的可能性。Open Targets最近发表的两篇论文称,美国食品药品监督管理局批准的药物中约有一半具有直接的人类遗传证据靶点。通过将靶点识别范围扩大到包括蛋白质网络伙伴(即物理接触中的分子),有遗传证据支持的药物靶点比例增加到了三分之二。然而,使用这些网络伙伴进行靶点识别的有效性尚未得到正式测试。为了解决这个问题,我们在一组可靠的阳性对照基因列表上测试了该方法。我们使用IntAct数据库来查找通过全外显子组关联研究(ExWAS)、全基因组关联研究(GWAS)结合一种名为效应指数的基因座到基因映射算法以及遗传优先级评分(GPS)识别出的基因的物理相互作用蛋白,GPS整合了来自Open Targets和SIDER数据库的八个遗传特征与药物适应症。我们评估了将与ExWAS、效应指数和GPS选择的基因相互作用的基因纳入后,在识别阳性对照方面的准确性,重点关注精度、敏感性和特异性。我们的结果表明,尽管分子相互作用在识别阳性对照基因时导致更高的敏感性,但其实际应用受到低精度的限制。使用IntAct将基因鉴定的靶点扩展到包括网络伙伴,并没有增加在412个测试性状中识别药物靶点的可能性,这表明对这类结果的解读应谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6cd/11850190/76c720daf6cd/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验