Suppr超能文献

直肠外科手术中竞争风险的统计模型与机器学习方法

Statistical models versus machine learning approach for competing risks in proctological surgery.

作者信息

Romano Lucia, Manno Andrea, Rossi Fabrizio, Masedu Francesco, Attanasio Margherita, Vistoli Fabio, Giuliani Antonio

机构信息

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.

Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy.

出版信息

Updates Surg. 2025 Apr;77(2):333-341. doi: 10.1007/s13304-025-02109-0. Epub 2025 Jan 25.

Abstract

Clinical risk prediction models are ubiquitous in many surgical domains. The traditional approach to develop these models involves the use of regression analysis. Machine learning algorithms are gaining in popularity as an alternative approach for prediction and classification problems. They can detect non-linear relationships between independent and dependent variables and incorporate many of them. In our work, we aimed to investigate the potential role of machine learning versus classical logistic regression for the preoperative risk assessment in proctological surgery. We used clinical data from a nationwide audit: the database consisted of 1510 patients affected by Goligher's grade III hemorrhoidal disease who underwent elective surgery. We collected anthropometric, clinical, and surgical data and we considered ten predictors to evaluate model-predictive performance. The clinical outcome was the complication rate evaluated at 30-day follow-up. Logistic regression and three machine learning techniques (Decision Tree, Support Vector Machine, Extreme Gradient Boosting) were compared in terms of area under the curve, balanced accuracy, sensitivity, and specificity. In our setting, machine learning and logistic regression models reached an equivalent predictive performance. Regarding the relative importance of the input features, all models agreed in identifying the most important factor. Combining and comparing statistical analysis and machine learning approaches in clinical field should be a common ambition, focused on improving and expanding interdisciplinary cooperation.

摘要

临床风险预测模型在许多外科领域中无处不在。开发这些模型的传统方法涉及使用回归分析。机器学习算法作为预测和分类问题的替代方法正越来越受欢迎。它们可以检测自变量和因变量之间的非线性关系,并纳入其中许多关系。在我们的工作中,我们旨在研究机器学习与经典逻辑回归在直肠外科手术术前风险评估中的潜在作用。我们使用了来自全国性审计的临床数据:该数据库由1510例患有戈利格尔III级痔病并接受择期手术的患者组成。我们收集了人体测量学、临床和手术数据,并考虑了十个预测因素来评估模型的预测性能。临床结局是在30天随访时评估的并发症发生率。在曲线下面积、平衡准确度、敏感性和特异性方面比较了逻辑回归和三种机器学习技术(决策树、支持向量机、极端梯度提升)。在我们的研究中,机器学习和逻辑回归模型达到了同等的预测性能。关于输入特征的相对重要性,所有模型在识别最重要因素方面达成了一致。在临床领域结合和比较统计分析与机器学习方法应该是一个共同的目标,重点是改善和扩大跨学科合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ea/11961508/3e44a612fb7e/13304_2025_2109_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验