Wang Caiwei, Li Zicheng, Zhang Wenli, Chen Bo, Ge Yuanyuan, Li Zhili, Cui Xuemin
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China.
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China.
J Colloid Interface Sci. 2025 May;685:674-684. doi: 10.1016/j.jcis.2025.01.165. Epub 2025 Jan 21.
Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons. Herein, a strategy of melamine-boosted KCO activation is proposed to prepare edge-nitrogen-doped hierarchical porous carbons (ENHPCs). KOCN generated by KCO reacting cyano groups (-CN) couples with KCO activation engineers large-surface-area porous carbon. KCN in-situ generated by KOCN etching carbon atoms plays a template role in constructing centralized mesopores. Edge-nitrogen skeleton is formed by g-CN losing -CN, and then in-situ integrated into porous carbon skeleton. The efficiency of melamine-boosted KCO activation reaches the highest at a melamine/lignin mass ratio of 0.5, where the optimized ENHPCs (ENHPC-0.5) have a large surface area of 3122 m/g, a mesopore architecture (2.8 nm) with a mesoporosity of 60.5 % and a moderate edge-N content of 1.9 at.%. ENHPC-0.5 cathode displays a high capacitance of 350F/g at 0.1 A/g, an excellent rate capability of 129F/g at 20 A/g and a robust cycling life. This work provides a novel strategy to prepare heteroatom-doped high-surface-area porous carbons for zinc ion hybrid capacitors.
具有大表面积(>3000 m²/g)和杂原子掺杂的多孔碳作为锌离子混合电容器的电极材料显示出巨大的潜力。集中的中孔有效地加速了动力学,而边缘氮可以有效地增强赝电容能力。在大表面积多孔碳中设计集中中孔和边缘氮是一项巨大的挑战。在此,提出了一种三聚氰胺促进的KCO活化策略来制备边缘氮掺杂的分级多孔碳(ENHPCs)。KCO与氰基(-CN)反应生成的KOCN与KCO活化相结合,设计出大表面积多孔碳。KOCN蚀刻碳原子原位生成的KCN在构建集中中孔中起模板作用。边缘氮骨架由g-CN失去-CN形成,然后原位整合到多孔碳骨架中。三聚氰胺促进的KCO活化效率在三聚氰胺/木质素质量比为0.5时达到最高,此时优化后的ENHPCs(ENHPC-0.5)具有3122 m²/g的大表面积、2.8 nm的中孔结构、60.5%的中孔率和1.9 at.%的适度边缘氮含量。ENHPC-0.5阴极在0.1 A/g时显示出350F/g的高电容、在20 A/g时具有129F/g的优异倍率性能和稳健的循环寿命。这项工作为制备用于锌离子混合电容器的杂原子掺杂高表面积多孔碳提供了一种新策略。