文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用堆叠式变压器模型和可解释人工智能的结肠癌疾病自动诊断

Automated Diagnosis for Colon Cancer Diseases Using Stacking Transformer Models and Explainable Artificial Intelligence.

作者信息

Gabralla Lubna Abdelkareim, Hussien Ali Mohamed, AlMohimeed Abdulaziz, Saleh Hager, Alsekait Deema Mohammed, El-Sappagh Shaker, Ali Abdelmgeid A, Refaat Hassan Moatamad

机构信息

Department of Computer Science and Information Technology, Applied College, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Department of Computer Science, Faculty of Science, Aswan University, Aswan 81528, Egypt.

出版信息

Diagnostics (Basel). 2023 Sep 13;13(18):2939. doi: 10.3390/diagnostics13182939.


DOI:10.3390/diagnostics13182939
PMID:37761306
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10529133/
Abstract

Colon cancer is the third most common cancer type worldwide in 2020, almost two million cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic stacking deep learning model to predict colon cancer. Stacking deep learning is integrated with pretrained convolutional neural network (CNN) models with a metalearner to enhance colon cancer prediction performance. The proposed model is compared with VGG16, InceptionV3, Resnet50, and DenseNet121 using different evaluation metrics. Furthermore, the proposed models are evaluated using the LC25000 and WCE binary and muticlassified colon cancer image datasets. The results show that the stacking models recorded the highest performance for the two datasets. For the LC25000 dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (100). For the WCE colon image dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (98). Stacking-SVM achieved the highest performed compared to existing models (VGG16, InceptionV3, Resnet50, and DenseNet121) because it combines the output of multiple single models and trains and evaluates a metalearner using the output to produce better predictive results than any single model. Black-box deep learning models are represented using explainable AI (XAI).

摘要

结肠癌是2020年全球第三大常见癌症类型,近200万例病例被确诊。因此,提供新的、高度准确的结肠癌检测技术可实现该疾病的早期成功治疗。本文旨在提出一种异质堆叠深度学习模型来预测结肠癌。堆叠深度学习与预训练的卷积神经网络(CNN)模型以及一个元学习器相结合,以提高结肠癌预测性能。使用不同的评估指标将所提出的模型与VGG16、InceptionV3、Resnet50和DenseNet121进行比较。此外,使用LC25000和WCE二进制及多分类结肠癌图像数据集对所提出的模型进行评估。结果表明,堆叠模型在这两个数据集上表现出最高性能。对于LC25000数据集,堆叠模型的性能准确率、召回率、精确率和F1分数最高(均为100)。对于WCE结肠癌图像数据集,堆叠模型的性能准确率、召回率、精确率和F1分数最高(均为98)。与现有模型(VGG16、InceptionV3、Resnet50和DenseNet121)相比,堆叠支持向量机(Stacking-SVM)表现最佳,因为它结合了多个单一模型的输出,并使用这些输出来训练和评估一个元学习器,从而产生比任何单一模型更好的预测结果。黑箱深度学习模型使用可解释人工智能(XAI)来表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/c12c40a92cce/diagnostics-13-02939-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/4b32d943fcf2/diagnostics-13-02939-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/0ce1a54bdeb7/diagnostics-13-02939-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/86ad686c6174/diagnostics-13-02939-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/7dd782d1eedc/diagnostics-13-02939-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/e68bf963e8fe/diagnostics-13-02939-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/eb1d6bdc79a8/diagnostics-13-02939-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/8cc079a101cb/diagnostics-13-02939-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/e5601d15023a/diagnostics-13-02939-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/dfaf2204c4cb/diagnostics-13-02939-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/07c4dc260b19/diagnostics-13-02939-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/e9de5da3ef80/diagnostics-13-02939-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/c12c40a92cce/diagnostics-13-02939-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/4b32d943fcf2/diagnostics-13-02939-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/0ce1a54bdeb7/diagnostics-13-02939-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/86ad686c6174/diagnostics-13-02939-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/7dd782d1eedc/diagnostics-13-02939-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/e68bf963e8fe/diagnostics-13-02939-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/eb1d6bdc79a8/diagnostics-13-02939-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/8cc079a101cb/diagnostics-13-02939-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/e5601d15023a/diagnostics-13-02939-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/dfaf2204c4cb/diagnostics-13-02939-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/07c4dc260b19/diagnostics-13-02939-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/e9de5da3ef80/diagnostics-13-02939-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ddb/10529133/c12c40a92cce/diagnostics-13-02939-g012.jpg

相似文献

[1]
Automated Diagnosis for Colon Cancer Diseases Using Stacking Transformer Models and Explainable Artificial Intelligence.

Diagnostics (Basel). 2023-9-13

[2]
Ensemble approach of transfer learning and vision transformer leveraging explainable AI for disease diagnosis: An advancement towards smart healthcare 5.0.

Comput Biol Med. 2024-9

[3]
Diagnosis of COVID-19 Using Chest X-ray Images and Disease Symptoms Based on Stacking Ensemble Deep Learning.

Diagnostics (Basel). 2023-6-5

[4]
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.

J Adv Res. 2023-6

[5]
Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images.

Int J Med Inform. 2023-9

[6]
An Explainable AI Paradigm for Alzheimer's Diagnosis Using Deep Transfer Learning.

Diagnostics (Basel). 2024-2-5

[7]
Explainable lung cancer classification with ensemble transfer learning of VGG16, Resnet50 and InceptionV3 using grad-cam.

BMC Med Imaging. 2024-7-19

[8]
DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.

Comput Methods Programs Biomed. 2024-1

[9]
A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications.

Adv Eng Softw. 2023-1

[10]
DeepHistoNet: A robust deep-learning model for the classification of hepatocellular, lung, and colon carcinoma.

Microsc Res Tech. 2024-2

引用本文的文献

[1]
Explainable self-supervised learning for medical image diagnosis based on DINO V2 model and semantic search.

Sci Rep. 2025-9-1

[2]
Colorectal cancer unmasked: A synergistic AI framework for Hyper-granular image dissection, precision segmentation, and automated diagnosis.

BMC Med Imaging. 2025-7-15

[3]
The role of explainable artificial intelligence in disease prediction: a systematic literature review and future research directions.

BMC Med Inform Decis Mak. 2025-3-4

[4]
Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

Sci Rep. 2025-1-25

[5]
ELW-CNN: An extremely lightweight convolutional neural network for enhancing interoperability in colon and lung cancer identification using explainable AI.

Healthc Technol Lett. 2025-1-22

[6]
Complex shape markers can detect alterations in the spatial distribution of cell nuclei in human lung squamous cell carcinoma: a useful tool for automatic analysis?

Histochem Cell Biol. 2024-11-6

[7]
A stacked machine learning-based classification model for endometriosis and adenomyosis: a retrospective cohort study utilizing peripheral blood and coagulation markers.

Front Digit Health. 2024-9-10

[8]
Automated Lung and Colon Cancer Classification Using Histopathological Images.

Biomed Eng Comput Biol. 2024-8-14

[9]
Research on bronze wine vessel classification using improved SSA-CBAM-GNNs.

PLoS One. 2024

[10]
Artificial Intelligence in the Diagnosis of Colorectal Cancer: A Literature Review.

Diagnostics (Basel). 2024-3-1

本文引用的文献

[1]
Diagnosis of COVID-19 Using Chest X-ray Images and Disease Symptoms Based on Stacking Ensemble Deep Learning.

Diagnostics (Basel). 2023-6-5

[2]
Deep learning methods for medical image fusion: A review.

Comput Biol Med. 2023-6

[3]
Application of artificial intelligence in diagnosis and treatment of colorectal cancer: A novel Prospect.

Front Med (Lausanne). 2023-3-8

[4]
A machine learning tool for identifying non-metastatic colorectal cancer in primary care.

Eur J Cancer. 2023-3

[5]
Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks.

J Healthc Eng. 2022

[6]
Correlation between human colon cancer specific antigens and Raman spectra. Attempting to use Raman spectroscopy in the determination of tumor markers for colon cancer.

Nanomedicine. 2023-2

[7]
A stacking-based artificial intelligence framework for an effective detection and localization of colon polyps.

Sci Rep. 2022-10-21

[8]
Lung and colon cancer classification using medical imaging: a feature engineering approach.

Phys Eng Sci Med. 2022-9

[9]
An Ensemble-Based Deep Convolutional Neural Network for Computer-Aided Polyps Identification From Colonoscopy.

Front Genet. 2022-4-26

[10]
Predicting Breast Cancer Based on Optimized Deep Learning Approach.

Comput Intell Neurosci. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索