Gabralla Lubna Abdelkareim, Hussien Ali Mohamed, AlMohimeed Abdulaziz, Saleh Hager, Alsekait Deema Mohammed, El-Sappagh Shaker, Ali Abdelmgeid A, Refaat Hassan Moatamad
Department of Computer Science and Information Technology, Applied College, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Department of Computer Science, Faculty of Science, Aswan University, Aswan 81528, Egypt.
Diagnostics (Basel). 2023 Sep 13;13(18):2939. doi: 10.3390/diagnostics13182939.
Colon cancer is the third most common cancer type worldwide in 2020, almost two million cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic stacking deep learning model to predict colon cancer. Stacking deep learning is integrated with pretrained convolutional neural network (CNN) models with a metalearner to enhance colon cancer prediction performance. The proposed model is compared with VGG16, InceptionV3, Resnet50, and DenseNet121 using different evaluation metrics. Furthermore, the proposed models are evaluated using the LC25000 and WCE binary and muticlassified colon cancer image datasets. The results show that the stacking models recorded the highest performance for the two datasets. For the LC25000 dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (100). For the WCE colon image dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (98). Stacking-SVM achieved the highest performed compared to existing models (VGG16, InceptionV3, Resnet50, and DenseNet121) because it combines the output of multiple single models and trains and evaluates a metalearner using the output to produce better predictive results than any single model. Black-box deep learning models are represented using explainable AI (XAI).
结肠癌是2020年全球第三大常见癌症类型,近200万例病例被确诊。因此,提供新的、高度准确的结肠癌检测技术可实现该疾病的早期成功治疗。本文旨在提出一种异质堆叠深度学习模型来预测结肠癌。堆叠深度学习与预训练的卷积神经网络(CNN)模型以及一个元学习器相结合,以提高结肠癌预测性能。使用不同的评估指标将所提出的模型与VGG16、InceptionV3、Resnet50和DenseNet121进行比较。此外,使用LC25000和WCE二进制及多分类结肠癌图像数据集对所提出的模型进行评估。结果表明,堆叠模型在这两个数据集上表现出最高性能。对于LC25000数据集,堆叠模型的性能准确率、召回率、精确率和F1分数最高(均为100)。对于WCE结肠癌图像数据集,堆叠模型的性能准确率、召回率、精确率和F1分数最高(均为98)。与现有模型(VGG16、InceptionV3、Resnet50和DenseNet121)相比,堆叠支持向量机(Stacking-SVM)表现最佳,因为它结合了多个单一模型的输出,并使用这些输出来训练和评估一个元学习器,从而产生比任何单一模型更好的预测结果。黑箱深度学习模型使用可解释人工智能(XAI)来表示。
Diagnostics (Basel). 2023-9-13
Diagnostics (Basel). 2023-6-5
Diagnostics (Basel). 2024-2-5
Comput Methods Programs Biomed. 2024-1
BMC Med Inform Decis Mak. 2025-3-4
Biomed Eng Comput Biol. 2024-8-14
Diagnostics (Basel). 2024-3-1
Diagnostics (Basel). 2023-6-5
Comput Biol Med. 2023-6
Front Med (Lausanne). 2023-3-8
Phys Eng Sci Med. 2022-9
Comput Intell Neurosci. 2022