Suppr超能文献

一种用于介电电泳的基于低成本印刷电路板的离心微流控平台。

A low-cost printed circuit board-based centrifugal microfluidic platform for dielectrophoresis.

作者信息

Rondot Nicklas, Yan Songyuan, Mager Dario, Kulinsky Lawrence

机构信息

Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Henry Samueli School of Engineering, University of California, Irvine, CA, USA.

出版信息

Microsyst Nanoeng. 2025 Jan 27;11(1):23. doi: 10.1038/s41378-024-00856-5.

Abstract

In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor. Therefore, it has significant advantages in terms of cost and reliability. However, to integrate DEP on a spinning disc, a major obstacle is transferring power to the electrodes that generate DEP forces. Existing solutions for power transfer lack portability and availability or introduce excessive complexity for DEP settings. We present a concept that leverages the compatibility of DEP and inductive power transfer to bring DEP onto a rotating disc without much circuitry. Our solution leverages the ongoing advances in the printed circuit board market to make low-cost cartridges (<$1) that can employ DEP, which was validated using yeast cells. The resulting DEPDisc platform solves the challenge that existing printed circuit board electrodes are reliant on expensive high-voltage function generators by boosting the voltage using resonant inductive power transfer. This work includes a device costing less than $100 and easily replicable with the information provided in the Supplementary material. Consequently, with DEPDisc we present the first DEP-based low-cost platform for cell handling where both the device and the cartridges are truly inexpensive.

摘要

近几十年来,微粒和生物细胞的电动操控技术在从生物医学诊断到微尺度组装等众多领域得到了广泛应用。电动操控技术(如介电泳,DEP)的集成极大地推动了微流控即时检测系统的发展,因为许多现代检测都需要对细胞进行操控。与传统的泵驱动微流控技术(通常用于DEP应用)相比,离心式光盘微流控技术能够在单个电机的控制下,将各种液体操控任务整合到独立的光盘中。因此,它在成本和可靠性方面具有显著优势。然而,要将DEP集成到旋转光盘上,一个主要障碍是如何将电力传输到产生DEP力的电极上。现有的电力传输解决方案缺乏便携性和实用性,或者给DEP设置带来了过多的复杂性。我们提出了一种概念,利用DEP与感应式电力传输的兼容性,在不增加太多电路的情况下将DEP应用于旋转光盘。我们的解决方案借助了印刷电路板市场的不断进步,制造出了成本低廉(小于1美元)且能采用DEP的墨盒,并使用酵母细胞进行了验证。由此产生的DEP光盘平台通过共振感应式电力传输提升电压,解决了现有印刷电路板电极依赖昂贵的高压函数发生器这一难题。这项工作所涉及的设备成本不到100美元,并且利用补充材料中提供的信息很容易进行复制。因此,借助DEP光盘,我们推出了首个基于DEP的低成本细胞操控平台,该平台的设备和墨盒都真正价格低廉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b27/11770146/fa7c9ca5413a/41378_2024_856_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验