Suppr超能文献

基于互补金属氧化物半导体(CMOS)的介电电泳(DEP)微流体技术对活酵母细胞和死酵母细胞的表征与分离

Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics.

作者信息

Matbaechi Ettehad Honeyeh, Wenger Christian

机构信息

IHP-Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.

BTU Cottbus-Senftenberg, 03046 Cottbus, Germany.

出版信息

Micromachines (Basel). 2021 Mar 6;12(3):270. doi: 10.3390/mi12030270.

Abstract

This study aims at developing a miniaturized CMOS integrated silicon-based microfluidic system, compatible with a standard CMOS process, to enable the characterization, and separation of live and dead yeast cells (as model bio-particle organisms) in a cell mixture using the DEP technique. DEP offers excellent benefits in terms of cost, operational power, and especially easy electrode integration with the CMOS architecture, and requiring label-free sample preparation. This can increase the likeliness of using DEP in practical settings. In this work the DEP force was generated using an interdigitated electrode arrays (IDEs) placed on the bottom of a CMOS-based silicon microfluidic channel. This system was primarily used for the immobilization of yeast cells using DEP. This study validated the system for cell separation applications based on the distinct responses of live and dead cells and their surrounding media. The findings confirmed the device's capability for efficient, rapid and selective cell separation. The viability of this CMOS embedded microfluidic for dielectrophoretic cell manipulation applications and compatibility of the dielectrophoretic structure with CMOS production line and electronics, enabling its future commercially mass production.

摘要

本研究旨在开发一种与标准CMOS工艺兼容的小型化基于CMOS集成硅的微流体系统,以便使用DEP技术对细胞混合物中的活酵母细胞和死酵母细胞(作为模型生物颗粒有机体)进行表征和分离。DEP在成本、操作功率方面具有显著优势,尤其是易于将电极与CMOS架构集成,且无需标记样品制备。这可以增加在实际环境中使用DEP的可能性。在这项工作中,DEP力是通过放置在基于CMOS的硅微流体通道底部的叉指电极阵列(IDEs)产生的。该系统主要用于使用DEP固定酵母细胞。本研究基于活细胞和死细胞及其周围介质的不同反应,验证了该系统在细胞分离应用中的有效性。研究结果证实了该装置具有高效、快速和选择性细胞分离的能力。这种嵌入式CMOS微流体用于介电泳细胞操作应用的可行性以及介电泳结构与CMOS生产线和电子设备的兼容性,使其未来能够进行商业大规模生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c264/8001765/4b8a691057ea/micromachines-12-00270-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验