Harris Bryana N, Woo Laura A, Perry R Noah, Wallace Alexia M, Civelek Mete, Wolf Matthew J, Saucerman Jeffrey J
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908-0759, USA.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0759, USA.
Development. 2025 Feb 15;152(4). doi: 10.1242/dev.204397. Epub 2025 Feb 17.
Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 74 of 81 (91.35%) independent experiments from the literature. The model predicts that in response to YAP activation, the Hippo module crosstalks to the growth factor module via PI3K and cMyc to drive cell cycle activity. This predicted YAP-cMyc axis is validated experimentally in rat CMs and further supported by YAP-stimulated cMyc open chromatin and mRNA in mouse hearts. This validated computational model predicts how individual regulators and modules coordinate to control CM proliferation.
虽然已经鉴定出许多心肌细胞(CM)增殖的调节因子,但它们在心脏发育或再生过程中如何协调仍知之甚少。在这里,我们开发了一个CM增殖调节网络的计算模型,以获得关键调节因子并从系统层面进行理解。该模型定义了五个模块(DNA复制、有丝分裂、胞质分裂、生长因子、Hippo信号通路),并将它们整合到一个由72个节点和88个反应组成的网络中,该网络正确预测了文献中81个独立实验中的74个(91.35%)。该模型预测,响应YAP激活,Hippo模块通过PI3K和cMyc与生长因子模块发生串扰,以驱动细胞周期活动。这一预测的YAP-cMyc轴在大鼠CM中得到了实验验证,并在小鼠心脏中得到了YAP刺激的cMyc开放染色质和mRNA的进一步支持。这个经过验证的计算模型预测了单个调节因子和模块如何协调以控制CM增殖。