Shabanian Mahdieh, Taylor Zachary, Woods Christopher, Bernieh Anas, Dillman Jonathan, He Lili, Ranganathan Sarangarajan, Picarsic Jennifer, Somasundaram Elanchezhian
University of Utah, Biomedical Informatics Department, Salt Lake City, UT, United States.
Cincinnati Children's AI Imaging Research (CAIIR) Center, Cincinnati, OH, United States.
J Pathol Inform. 2024 Dec 11;16:100416. doi: 10.1016/j.jpi.2024.100416. eCollection 2025 Jan.
Traditional liver fibrosis staging via percutaneous biopsy suffers from sampling bias and variable inter-pathologist agreement, highlighting the need for more objective techniques. Deep learning models for disease staging from medical images have shown potential to decrease diagnostic variability, with recent weakly supervised learning strategies showing promising results even with limited manual annotation.
To study the clustering-constrained attention multiple instance learning (CLAM) approach for staging liver fibrosis on trichrome whole slide images (WSIs) of children and young adults.
This is an ethics board approved retrospective study utilizing 217 trichrome WSI from pediatric liver biopsies for model development and testing. Two pediatric pathologists scored WSI using two liver fibrosis staging systems, METAVIR and Ishak. Cases were then secondarily categorized into either high- or low-stage liver fibrosis and used for model development. The CLAM pipeline was used to develop binary classification models for histological liver fibrosis. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, and Cohen's Kappa.
The CLAM models showed strong diagnostic performance, with sensitivities up to 0.76 and AUCs up to 0.92 for distinguishing low- and high-stage fibrosis. The agreement between model predictions and average pathologist scores was moderate to substantial (Kappa: 0.57-0.69), whereas pathologist agreement on the METAVIR and Ishak scoring systems was only fair (Kappa: 0.39-0.46).
CLAM pipeline showed promise in detecting features important for differentiating low- and high-stage fibrosis from trichrome WSI based on the results, offering a promising objective method for liver fibrosis detection in children and young adults.
通过经皮活检进行传统肝纤维化分期存在抽样偏差以及病理学家之间的一致性差异,这凸显了对更客观技术的需求。用于从医学图像进行疾病分期的深度学习模型已显示出降低诊断变异性的潜力,最近的弱监督学习策略即使在手动标注有限的情况下也显示出了有前景的结果。
研究聚类约束注意力多实例学习(CLAM)方法在儿童和青年成人的三色全切片图像(WSIs)上对肝纤维化进行分期。
这是一项经伦理委员会批准的回顾性研究,利用来自儿科肝活检的217张三色WSIs进行模型开发和测试。两名儿科病理学家使用两种肝纤维化分期系统METAVIR和Ishak对WSIs进行评分。然后将病例再次分为高阶段或低阶段肝纤维化,并用于模型开发。CLAM流程用于开发用于组织学肝纤维化的二元分类模型。使用曲线下面积(AUC)、准确性、敏感性、特异性和科恩卡帕系数评估模型性能。
CLAM模型显示出强大的诊断性能,区分低阶段和高阶段纤维化的敏感性高达0.76,AUC高达0.92。模型预测与病理学家平均评分之间的一致性为中等至实质性(卡帕系数:0.57 - 0.69),而病理学家在METAVIR和Ishak评分系统上的一致性仅为一般(卡帕系数:0.39 - 0.46)。
基于结果,CLAM流程在从三色WSIs中检测区分低阶段和高阶段纤维化的重要特征方面显示出前景,为儿童和青年成人的肝纤维化检测提供了一种有前景的客观方法。