Suppr超能文献

通过半监督生成对抗网络减轻过饱和荧光图像

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

作者信息

Bao Shunxing, Guo Junlin, Lee Ho Hin, Deng Ruining, Cui Can, Remedios Lucas W, Liu Quan, Yang Qi, Xu Kaiwen, Yu Xin, Li Jia, Li Yike, Roland Joseph T, Liu Qi, Lau Ken S, Wilson Keith T, Coburn Lori A, Landman Bennett A, Huo Yuankai

机构信息

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Department of Computer Science, Nashville, TN, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635687. Epub 2024 Aug 22.

Abstract

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels. Traditional gamma correction methods for fixing saturation are limited, often incorrectly assuming uniform distribution of saturation, which is rarely the case in practice. This paper introduces a novel approach to correct saturation artifacts from a data-driven perspective. We introduce a two-stage, high-resolution hybrid generative adversarial network (HDmixGAN), which merges unpaired (CycleGAN) and paired (pix2pixHD) network architectures. This approach is designed to capitalize on the available small-scale paired data and the more extensive unpaired data from costly MxIF data. Specifically, we generate pseudo-paired data from large-scale unpaired over-saturated datasets with a CycleGAN, and train a Pix2pixGAN using both small-scale real and large-scale synthetic data derived from multiple DAPI staining rounds in MxIF. This method was validated against various baselines in a downstream nuclei detection task, improving the F1 score by 6% over the baseline. This is, to our knowledge, the first focused effort to address multi-round saturation in MxIF images, offering a specialized solution for enhancing cell analysis accuracy through improved image quality. The source code and implementation of the proposed method are available at https://github.com/MASILab/DAPIArtifactRemoval.git.

摘要

多重免疫荧光(MxIF)成像技术是生物医学研究中的一项关键工具,能够提供有关细胞组成和空间背景的详细信息。例如,在MxIF中,DAPI染色可识别细胞核,而CD20染色有助于分割细胞膜。然而,MxIF中一直存在的一个挑战是饱和伪影,这会阻碍对像素过度饱和区域进行单细胞水平的分析。传统的用于修复饱和的伽马校正方法存在局限性,通常错误地假设饱和度呈均匀分布,而在实际情况中这种情况很少见。本文从数据驱动的角度介绍了一种校正饱和伪影的新方法。我们引入了一种两阶段的高分辨率混合生成对抗网络(HDmixGAN),它融合了非配对(CycleGAN)和配对(pix2pixHD)网络架构。这种方法旨在利用现有的小规模配对数据以及来自成本高昂的MxIF数据的更广泛的非配对数据。具体而言,我们使用CycleGAN从大规模非配对过饱和数据集中生成伪配对数据,并使用来自MxIF中多个DAPI染色轮次的小规模真实数据和大规模合成数据来训练Pix2pixGAN。该方法在下游细胞核检测任务中针对各种基线进行了验证,F1分数比基线提高了6%。据我们所知,这是首次针对MxIF图像中的多轮饱和问题进行的专门研究,为通过提高图像质量来增强细胞分析准确性提供了一种专门的解决方案。所提出方法的源代码和实现可在https://github.com/MASILab/DAPIArtifactRemoval.git获取。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验