Suppr超能文献

用于多重免疫荧光成像的随机多通道图像合成

Random Multi-Channel Image Synthesis for Multiplexed Immunofluorescence Imaging.

作者信息

Bao Shunxing, Tang Yucheng, Lee Ho Hin, Gao Riqiang, Chiron Sophie, Lyu Ilwoo, Coburn Lori A, Wilson Keith T, Roland Joseph T, Landman Bennett A, Huo Yuankai

机构信息

Dept. of Computer Science, Vanderbilt University, USA.

Dept. of Electrical and Computer Engineering, Vanderbilt University, USA.

出版信息

Proc Mach Learn Res. 2021 Sep;156:36-46.

Abstract

Multiplex immunofluorescence (MxIF) is an emerging imaging technique that produces the high sensitivity and specificity of single-cell mapping. With a tenet of "seeing is believing", MxIF enables iterative staining and imaging extensive antibodies, which provides comprehensive biomarkers to segment and group different cells on a single tissue section. However, considerable depletion of the scarce tissue is inevitable from extensive rounds of staining and bleaching ("missing tissue"). Moreover, the immunofluorescence (IF) imaging can globally fail for particular rounds ("missing stain"). In this work, we focus on the "missing stain" issue. It would be appealing to develop digital image synthesis approaches to restore missing stain images without losing more tissue physically. Herein, we aim to develop image synthesis approaches for eleven MxIF structural molecular markers (i.e., epithelial and stromal) on real samples. We propose a novel multi-channel high-resolution image synthesis approach, called pixN2N-HD, to tackle possible missing stain scenarios via a high-resolution generative adversarial network (GAN). Our contribution is three-fold: (1) a single deep network framework is proposed to tackle missing stain in MxIF; (2) the proposed "N-to-N" strategy reduces theoretical four years of computational time to 20 hours when covering all possible missing stains scenarios, with up to five missing stains (e.g., "(N-1)-to-1", "(N-2)-to-2"); and (3) this work is the first comprehensive experimental study of investigating cross-stain synthesis in MxIF. Our results elucidate a promising direction of advancing MxIF imaging with deep image synthesis.

摘要

多重免疫荧光(MxIF)是一种新兴的成像技术,可实现单细胞图谱绘制的高灵敏度和特异性。秉持“眼见为实”的原则,MxIF能够对大量抗体进行迭代染色和成像,从而提供全面的生物标志物,以便在单个组织切片上对不同细胞进行分类和分组。然而,由于大量的染色和漂白过程,稀缺组织不可避免地会大量消耗(“组织缺失”)。此外,免疫荧光(IF)成像在特定轮次中可能会全面失败(“染色缺失”)。在这项工作中,我们专注于“染色缺失”问题。开发数字图像合成方法以恢复缺失的染色图像,同时不进一步损耗更多组织,这将是很有吸引力 的。在此,我们旨在针对真实样本上的11种MxIF结构分子标记(即上皮和基质)开发图像合成方法。我们提出了一种新颖的多通道高分辨率图像合成方法pixN2N-HD,通过高分辨率生成对抗网络(GAN)来处理可能出现的染色缺失情况。我们的贡献有三个方面:(1)提出了一个单一的深度网络框架来处理MxIF中的染色缺失问题;(2)所提出的“N对N”策略将覆盖所有可能的染色缺失情况(最多五个缺失染色情况,例如“(N - 1)对1”、“(N - 2)对2”)时的理论四年计算时间减少到20小时;(3)这项工作是对MxIF中交叉染色合成进行研究的首次全面实验性研究。我们的结果阐明了通过深度图像合成推进MxIF成像的一个有前景的方向。

相似文献

2
Inpainting Missing Tissue in Multiplexed Immunofluorescence Imaging.多重免疫荧光成像中缺失组织的修复
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12039. doi: 10.1117/12.2611827. Epub 2022 Apr 4.
10
Nucleus subtype classification using inter-modality learning.使用多模态学习进行细胞核亚型分类。
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006237. Epub 2024 Apr 3.

本文引用的文献

7
Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis.Hi-Net:用于多模态磁共振图像合成的混合融合网络。
IEEE Trans Med Imaging. 2020 Sep;39(9):2772-2781. doi: 10.1109/TMI.2020.2975344. Epub 2020 Feb 20.
8
Medical Image Synthesis via Deep Learning.基于深度学习的医学图像合成。
Adv Exp Med Biol. 2020;1213:23-44. doi: 10.1007/978-3-030-33128-3_2.
10
Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks.多对比度 MRI 图像合成的条件生成对抗网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2375-2388. doi: 10.1109/TMI.2019.2901750. Epub 2019 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验