Cottam Nicholas C, Ofori Kwadwo, Stoll Kevin T, Bryant Madison, Rogge Jessica R, Hekmatyar Khan, Sun Jianli, Charvet Christine J
Department of Biological Sciences, Delaware State University, Dover, Delaware 19901.
Idaho College of Osteopathic Medicine, Meridian, Idaho 83642.
J Neurosci. 2025 Mar 19;45(12):e1429242025. doi: 10.1523/JNEUROSCI.1429-24.2025.
Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging. The timeline of human developmental circuits is well known, but it is unclear how such timelines compare with those in mice. We lack age alignments across the lifespan of mice and humans. Here, we build upon our Translating Time resource, which is a tool that equates corresponding ages during development. We collected 1,125 observations from age-related changes in body, bone, dental, and brain processes to equate corresponding ages across humans, mice, and rats to boost power for comparison across humans and mice. We acquired high-resolution diffusion MR scans of mouse brains ( = 16) of either sex at sequential stages of postnatal development [postnatal day (P)3, 4, 12, 21, 60] to track brain circuit maturation (e.g., olfactory association, transcallosal pathways). We found heterogeneity in white matter pathway growth. Corpus callosum growth largely ceases days after birth, while the olfactory association pathway grows through P60. We found that a P3-4, mouse equates to a human at roughly GW24 and a P60 mouse equates to a human in teenage years. Therefore, white matter pathway maturation is extended in mice as it is in humans, but there are species-specific adaptations. For example, olfactory-related wiring is protracted in mice, which is linked to their reliance on olfaction. Our findings underscore the importance of translational tools to map common and species-specific biological processes from model systems to humans.
动物模型常用于研究发育过程和疾病风险,但人类和模型系统(如小鼠)在发育和衰老速度上存在显著差异。人类发育回路的时间线是众所周知的,但尚不清楚这些时间线与小鼠的时间线相比如何。我们缺乏小鼠和人类整个生命周期的年龄对应关系。在此,我们基于我们的“翻译时间”资源进行研究,这是一种在发育过程中使相应年龄相等的工具。我们收集了1125项关于身体、骨骼、牙齿和大脑过程中与年龄相关变化的观察结果,以确定人类、小鼠和大鼠之间的相应年龄,从而增强在人类和小鼠之间进行比较的能力。我们在出生后发育的连续阶段[出生后第(P)3、4、12、21、60天]获取了16只不同性别的小鼠大脑的高分辨率扩散磁共振扫描图像,以追踪大脑回路的成熟过程(如嗅觉关联、胼胝体通路)。我们发现白质通路生长存在异质性。胼胝体生长在出生后几天基本停止,而嗅觉关联通路在出生后第60天仍在生长。我们发现,出生后第3 - 4天的小鼠大致相当于人类妊娠24周时的情况,而出生后第60天的小鼠相当于人类青少年时期的情况。因此,小鼠白质通路的成熟过程与人类一样是延长的,但存在物种特异性适应。例如,与嗅觉相关的神经连接在小鼠中延长,这与它们对嗅觉的依赖有关。我们的研究结果强调了翻译工具在将模型系统中的常见和物种特异性生物学过程映射到人类方面的重要性。