Suppr超能文献

探索多模态[F]F-PSMA-1007 PET/CT和多参数MRI数据在预测原发性前列腺癌ISUP分级中的作用。

Exploring the role of multimodal [F]F-PSMA-1007 PET/CT and multiparametric MRI data in predicting ISUP grading of primary prostate cancer.

作者信息

Miao Cunke, Yao Fei, Fang Junfei, Tong Yingnuo, Lin Heng, Lu Chuntao, Peng Lu, Zhong JiaQi, Lin Yezhi

机构信息

The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.

出版信息

Eur J Nucl Med Mol Imaging. 2025 May;52(6):2087-2095. doi: 10.1007/s00259-025-07099-0. Epub 2025 Jan 28.

Abstract

PURPOSE

The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.

METHODS

This study conducted a retrospective analysis of 341 prostate cancer patients enrolled between 2019 and 2023, with data collected from five imaging modalities: [F]F-PSMA-1007 PET, CT, Diffusion Weighted Imaging (DWI), T2 Weighted Imaging (T2WI), and Apparent Diffusion Coefficient (ADC). The study compared the performance of five single-modality data sets, PET/CT dual-modality fusion data, mpMRI tri-modality fusion data, and five-modality fusion data within deep learning networks, analyzing how different modalities impact the accuracy of ISUP grading prediction. To address the issue of limited data, a few-shot deep learning network was employed, enabling training and cross-validation with only a small set of labeled samples. Additionally, the results were compared with those from preoperative biopsies and clinical prediction models to further assess the reliability of the experimental findings.

RESULTS

The experimental results demonstrate that the multimodal model (combining [F]F-PSMA-1007 PET/CT and multiparametric MRI) significantly outperforms other models in predicting ISUP grading of prostate cancer. Meanwhile, both the PET/CT dual-modality and mpMRI tri-modality models outperform the single-modality model, with comparable performance between the two multimodal models. Furthermore, the experimental data confirm that the few-shot learning network introduced in this study provides reliable predictions, even with limited data.

CONCLUSION

This study highlights the potential of applying multimodal imaging techniques (such as PET/CT and mpMRI) in predicting ISUP grading of prostate cancer. The findings suggest that this integrated approach can enhance the accuracy of prostate cancer diagnosis and contribute to more personalized treatment planning. Furthermore, incorporating few-shot learning into the model development process allows for more robust predictions despite limited data, making this approach highly valuable in clinical settings with sparse data.

摘要

目的

本研究探讨多模态成像技术,如[F]F - PSMA - 1007 PET/CT和多参数MRI(mpMRI),在预测前列腺癌国际泌尿病理学会(ISUP)分级中的作用。目标是通过将这些先进的成像模态与临床变量相结合来提高诊断准确性并改善临床决策。特别是,本研究调查了少样本学习在应对前列腺癌成像中数据有限这一挑战方面的应用,这在医学研究中是一个常见问题。

方法

本研究对2019年至2023年期间纳入的341例前列腺癌患者进行了回顾性分析,数据来自五种成像模态:[F]F - PSMA - 1007 PET、CT、扩散加权成像(DWI)、T2加权成像(T2WI)和表观扩散系数(ADC)。该研究比较了深度学习网络中五个单模态数据集、PET/CT双模态融合数据、mpMRI三模态融合数据和五模态融合数据的性能,分析了不同模态如何影响ISUP分级预测的准确性。为解决数据有限的问题,采用了少样本深度学习网络,仅用一小部分标记样本就能进行训练和交叉验证。此外,将结果与术前活检和临床预测模型的结果进行比较,以进一步评估实验结果的可靠性。

结果

实验结果表明,多模态模型(结合[F]F - PSMA - 1007 PET/CT和多参数MRI)在预测前列腺癌ISUP分级方面明显优于其他模型。同时,PET/CT双模态模型和mpMRI三模态模型均优于单模态模型,这两种多模态模型的性能相当。此外,实验数据证实,本研究引入的少样本学习网络即使在数据有限的情况下也能提供可靠的预测。

结论

本研究突出了应用多模态成像技术(如PET/CT和mpMRI)预测前列腺癌ISUP分级的潜力。研究结果表明,这种综合方法可以提高前列腺癌诊断的准确性,并有助于制定更个性化的治疗方案。此外,将少样本学习纳入模型开发过程,即使数据有限也能进行更可靠的预测,这使得该方法在数据稀疏的临床环境中具有很高的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验