文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于级联深度学习算法的前列腺病变在双参数 MRI 检测的评估。

Evaluation of a Cascaded Deep Learning-based Algorithm for Prostate Lesion Detection at Biparametric MRI.

机构信息

From the Molecular Imaging Branch (Y.L., E.C.Y., M.J.B., S.A.H., T.E.P., K.M.M., N.S.L., P.L.C., B.T.), Center for Interventional Oncology (L.H., C.G., B.J.W.), Laboratory of Pathology (A.T., M.J.M.), and Urologic Oncology Branch (S.G., P.A.P.), National Cancer Institute, National Institutes of Health, 10 Center Dr, MSC 1182, Bldg 10, Rm B3B85, Bethesda, MD 20892; NVIDIA, Santa Clara, Calif (J.T., D.Y., Z.X., D.X.); Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, Md (L.H., C.G., B.J.W.); and Department of Radiology, Singapore General Hospital, Singapore (Y.M.L.).

出版信息

Radiology. 2024 May;311(2):e230750. doi: 10.1148/radiol.230750.


DOI:10.1148/radiol.230750
PMID:38713024
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11140533/
Abstract

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024

摘要

背景 与系统活检相比,多参数 MRI(mpMRI)可提高前列腺癌(PCa)的检出率,但其解读容易受到读者间差异的影响,从而导致性能不一致。人工智能(AI)模型可以辅助 mpMRI 解读,但需要大量的训练数据集和广泛的模型测试。目的 评估一种双参数 MRI AI 算法在前列腺内病变检测和分割中的性能,并比较其与放射科医生阅读和活检结果的性能。材料与方法 本研究对 2019 年 4 月至 2022 年 9 月间连续接受 mpMRI、超声引导下系统活检或系统和 MRI/US 融合引导下联合活检的疑似或已知前列腺癌患者的前瞻性登记进行了二次分析。所有病变均采用前列腺影像报告和数据系统第 2.1 版进行前瞻性评估。使用灵敏度、阳性预测值(PPV)和 Dice 相似系数(DSC)比较了先前开发的级联深度学习算法在病变和参与者水平上的表现与组织病理学结果和放射科医生的阅读结果。结果 共纳入 658 名男性参与者(中位年龄,67 岁[IQR,61-71 岁])和 1029 个 MRI 可见病变。在组织病理学分析中,45%(294/658)的参与者存在国际泌尿病理学会(ISUP)分级组(GG)2 级或更高的病变。该算法可识别出 96%(282/294;95%CI:94%,98%)的所有有临床意义的 PCa 患者,而放射科医生识别出 98%(287/294;95%CI:96%,99%; =.23)。该算法分别识别出 122 名、159 名、49 名、40 名和 46 名参与者的 ISUP GG 1、2、3、4 和 5 级病变,其识别率分别为 84%(103/122)、96%(152/159)、96%(47/49)、95%(38/40)和 98%(45/46)。在使用放射科医生地面实况的病变水平分析中,检测灵敏度为 55%(569/1029;95%CI:52%,58%),PPV 为 57%(535/934;95%CI:54%,61%)。每个参与者的平均假阳性病变数为 0.61(范围,0-3)。病变分割的 DSC 为 0.29。结论 AI 算法可在双参数 MRI 扫描中检测可疑癌性病变,其性能与经验丰富的放射科医生相当。此外,该算法还可可靠地预测组织病理学检查中有临床意义的病变。ClinicalTrials.gov 标识符:NCT03354416 ©RSNA,2024

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/596e/11140533/4ce3ec52ca14/radiol.230750.VA.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/596e/11140533/4ce3ec52ca14/radiol.230750.VA.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/596e/11140533/4ce3ec52ca14/radiol.230750.VA.jpg

相似文献

[1]
Evaluation of a Cascaded Deep Learning-based Algorithm for Prostate Lesion Detection at Biparametric MRI.

Radiology. 2024-5

[2]
A Cascaded Deep Learning-Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging.

Acad Radiol. 2022-8

[3]
External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans.

Radiol Imaging Cancer. 2024-11

[4]
Prospective evaluation of PI-RADSv2.1 using multiparametric and biparametric MRI for detecting clinically significant prostate cancer based on MRI/US fusion-guided biopsy.

Jpn J Radiol. 2025-3

[5]
Comparison of Positive Predictive Values of Biparametric MRI and Multiparametric MRI-directed Transrectal US-guided Targeted Prostate Biopsy.

Radiology. 2024-6

[6]
MRI-based Deep Learning Algorithm for Assisting Clinically Significant Prostate Cancer Detection: A Bicenter Prospective Study.

Radiology. 2025-3

[7]
Prospective Evaluation of PI-RADS Version 2.1 for Prostate Cancer Detection and Investigation of Multiparametric MRI-derived Markers.

Radiology. 2023-5

[8]
Concordance Between the Expert Reading of Biparametric-MRI and the Nonexpert Multiparametric-MRI for the Detection of Clinically Significant Prostate Cancer: Clinical Implications.

Clin Genitourin Cancer. 2024-12

[9]
Prospective Validation of an Automated Hybrid Multidimensional MRI Tool for Prostate Cancer Detection Using Targeted Biopsy: Comparison with PI-RADS-based Assessment.

Radiol Imaging Cancer. 2025-1

[10]
Multiparametric MRI-ultrasonography software fusion prostate biopsy: initial results using a stereotactic robotic-assisted transperineal prostate biopsy platform comparing systematic vs targeted biopsy.

BJU Int. 2020-11

引用本文的文献

[1]
Leveraging Representation Learning for Bi-parametric Prostate MRI to Disambiguate PI-RADS 3 and Improve Biopsy Decision Strategies.

Invest Radiol. 2025-6-30

[2]
Research-based clinical deployment of artificial intelligence algorithm for prostate MRI.

Abdom Radiol (NY). 2025-5-26

[3]
Prostate Cancer Risk Stratification and Scan Tailoring Using Deep Learning on Abbreviated Prostate MRI.

J Magn Reson Imaging. 2025-9

[4]
Toward a Refined PI-RADS: The Feasibility and Limitations of More Informative Metrics in Reviewing MRI Scans.

J Magn Reson Imaging. 2025-9

[5]
An overview of utilizing artificial intelligence in localized prostate cancer imaging.

Expert Rev Med Devices. 2025-4

[6]
Exploring the role of multimodal [F]F-PSMA-1007 PET/CT and multiparametric MRI data in predicting ISUP grading of primary prostate cancer.

Eur J Nucl Med Mol Imaging. 2025-5

[7]
Multimodal approach to optimize biopsy decision-making for PI-RADS 3 lesions on multiparametric MRI.

Clin Imaging. 2025-1

[8]
The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review.

Cancers (Basel). 2024-8-24

[9]
External validation of AI for detecting clinically significant prostate cancer using biparametric MRI.

Abdom Radiol (NY). 2025-2

[10]
Target Volume Optimization for Localized Prostate Cancer.

Pract Radiat Oncol. 2024

本文引用的文献

[1]
Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: demonstration of transferability.

Eur Radiol. 2023-11

[2]
Prospective Evaluation of PI-RADS Version 2.1 for Prostate Cancer Detection and Investigation of Multiparametric MRI-derived Markers.

Radiology. 2023-5

[3]
Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI.

Radiology. 2023-5

[4]
A Brief Review of Artificial Intelligence in Genitourinary Oncological Imaging.

Can Assoc Radiol J. 2023-8

[5]
Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only.

N Engl J Med. 2022-12-8

[6]
Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway.

Nat Rev Urol. 2023-1

[7]
Current Status of Biparametric MRI in Prostate Cancer Diagnosis: Literature Analysis.

Life (Basel). 2022-5-28

[8]
A Cascaded Deep Learning-Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging.

Acad Radiol. 2022-8

[9]
Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions.

SN Comput Sci. 2021

[10]
Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level.

Prostate Cancer Prostatic Dis. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索