Fries Anya H, Choi Eunji, Han Summer S
Department of Management Science and Engineering, Stanford University, Stanford, CA, 94304, USA.
Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, 3180 Porter Drive, Office 118, Stanford, CA, 94304, USA.
BMC Med Res Methodol. 2025 Jan 27;25(1):22. doi: 10.1186/s12874-024-02418-9.
To effectively monitor long-term outcomes among cancer patients, it is critical to accurately assess patients' dynamic prognosis, which often involves utilizing multiple data sources (e.g., tumor registries, treatment histories, and patient-reported outcomes). However, challenges arise in selecting features to predict patient outcomes from high-dimensional data, aligning longitudinal measurements from multiple sources, and evaluating dynamic model performance.
We provide a framework for dynamic risk prediction using the penalized landmark supermodel (penLM) and develop novel metrics ([Formula: see text] and [Formula: see text]) to evaluate and summarize model performance across different timepoints. Through simulations, we assess the coverage of the proposed metrics' confidence intervals under various scenarios. We applied penLM to predict the updated 5-year risk of lung cancer mortality at diagnosis and for subsequent years by combining data from SEER registries (2007-2018), Medicare claims (2007-2018), Medicare Health Outcome Survey (2006-2018), and U.S. Census (1990-2010).
The simulations confirmed valid coverage (~ 95%) of the confidence intervals of the proposed summary metrics. Of 4,670 lung cancer patients, 41.5% died from lung cancer. Using penLM, the key features to predict lung cancer mortality included long-term lung cancer treatments, minority races, regions with low education attainment or racial segregation, and various patient-reported outcomes beyond cancer staging and tumor characteristics. When evaluated using the proposed metrics, the penLM model developed using multi-source data ([Formula: see text]of 0.77 [95% confidence interval: 0.74-0.79]) outperformed those developed using single-source data ([Formula: see text]range: 0.50-0.74).
The proposed penLM framework with novel evaluation metrics offers effective dynamic risk prediction when leveraging high-dimensional multi-source longitudinal data.
为有效监测癌症患者的长期预后,准确评估患者的动态预后至关重要,这通常需要利用多个数据源(如肿瘤登记、治疗史和患者报告的结果)。然而,在从高维数据中选择预测患者预后的特征、对齐来自多个来源的纵向测量以及评估动态模型性能方面存在挑战。
我们提供了一个使用惩罚地标超模型(penLM)进行动态风险预测的框架,并开发了新的指标([公式:见正文]和[公式:见正文])来评估和总结不同时间点的模型性能。通过模拟,我们评估了在各种情况下所提出指标的置信区间的覆盖范围。我们应用penLM,通过结合监测、流行病学与最终结果(SEER)登记处(2007 - 2018年)、医疗保险索赔(2007 - 2018年)、医疗保险健康结果调查(2006 - 2018年)和美国人口普查(1990 - 2010年)的数据,预测肺癌诊断时及后续年份更新后的5年肺癌死亡风险。
模拟结果证实了所提出的总结指标的置信区间具有有效的覆盖范围(约95%)。在4670例肺癌患者中,41.5%死于肺癌。使用penLM,预测肺癌死亡的关键特征包括长期肺癌治疗、少数族裔、教育程度低或种族隔离地区以及癌症分期和肿瘤特征之外的各种患者报告结果。当使用所提出的指标进行评估时,使用多源数据开发的penLM模型([公式:见正文]为0.77 [95%置信区间:0.74 - 0.79])优于使用单源数据开发的模型([公式:见正文]范围:0.50 - 0.74)。
所提出的带有新评估指标的penLM框架在利用高维多源纵向数据时提供了有效的动态风险预测。