Polytechnique Montréal, 500 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada.
Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada.
Sci Rep. 2022 Feb 24;12(1):3183. doi: 10.1038/s41598-022-07034-5.
In radiation oncology, predicting patient risk stratification allows specialization of therapy intensification as well as selecting between systemic and regional treatments, all of which helps to improve patient outcome and quality of life. Deep learning offers an advantage over traditional radiomics for medical image processing by learning salient features from training data originating from multiple datasets. However, while their large capacity allows to combine high-level medical imaging data for outcome prediction, they lack generalization to be used across institutions. In this work, a pseudo-volumetric convolutional neural network with a deep preprocessor module and self-attention (PreSANet) is proposed for the prediction of distant metastasis, locoregional recurrence, and overall survival occurrence probabilities within the 10 year follow-up time frame for head and neck cancer patients with squamous cell carcinoma. The model is capable of processing multi-modal inputs of variable scan length, as well as integrating patient data in the prediction model. These proposed architectural features and additional modalities all serve to extract additional information from the available data when availability to additional samples is limited. This model was trained on the public Cancer Imaging Archive Head-Neck-PET-CT dataset consisting of 298 patients undergoing curative radio/chemo-radiotherapy and acquired from 4 different institutions. The model was further validated on an internal retrospective dataset with 371 patients acquired from one of the institutions in the training dataset. An extensive set of ablation experiments were performed to test the utility of the proposed model characteristics, achieving an AUROC of [Formula: see text], [Formula: see text] and [Formula: see text] for DM, LR and OS respectively on the public TCIA Head-Neck-PET-CT dataset. External validation was performed on a retrospective dataset with 371 patients, achieving [Formula: see text] AUROC in all outcomes. To test for model generalization across sites, a validation scheme consisting of single site-holdout and cross-validation combining both datasets was used. The mean accuracy across 4 institutions obtained was [Formula: see text], [Formula: see text] and [Formula: see text] for DM, LR and OS respectively. The proposed model demonstrates an effective method for tumor outcome prediction for multi-site, multi-modal combining both volumetric data and structured patient clinical data.
在放射肿瘤学中,预测患者风险分层可以使治疗强化专业化,也可以在系统治疗和区域治疗之间进行选择,所有这些都有助于改善患者的预后和生活质量。深度学习在医学图像处理方面相对于传统放射组学具有优势,它可以从来自多个数据集的训练数据中学习显著特征。然而,虽然它们的大容量允许结合高级医学成像数据进行结果预测,但它们缺乏跨机构使用的通用性。在这项工作中,我们提出了一种具有深度预处理模块和自注意力的伪体积卷积神经网络(PreSANet),用于预测头颈部鳞状细胞癌患者在 10 年随访期间发生远处转移、局部区域复发和总生存的概率。该模型能够处理可变扫描长度的多模态输入,并在预测模型中整合患者数据。这些提出的架构特征和附加模态都有助于在可用样本有限时从可用数据中提取附加信息。该模型是在包含 298 名接受根治性放化疗的患者的公共癌症成像档案头颈部-PET-CT 数据集上进行训练的,该数据集来自 4 个不同的机构。该模型还在来自训练数据集中一个机构的 371 名患者的内部回顾性数据集上进行了验证。进行了广泛的消融实验来测试所提出模型特征的实用性,在公共 TCIA 头颈部-PET-CT 数据集上,分别达到了 [公式:见文本]、[公式:见文本]和 [公式:见文本]的 DM、LR 和 OS 的 AUROC。在包含 371 名患者的回顾性数据集上进行了外部验证,在所有结果中均达到了 [公式:见文本]的 AUROC。为了测试模型在站点间的通用性,使用了一种由单个站点保留和交叉验证相结合的验证方案,同时结合了两个数据集。在 4 个机构中获得的平均准确率分别为 [公式:见文本]、[公式:见文本]和 [公式:见文本],用于 DM、LR 和 OS。所提出的模型为多站点、多模态(同时结合体积数据和结构化患者临床数据)的肿瘤结果预测提供了一种有效的方法。