Suppr超能文献

自动机器学习与卷积神经网络在糖尿病研究中的应用——组织病理学图像在设计和探索实验模型中的作用

Auto Machine Learning and Convolutional Neural Network in Diabetes Mellitus Research-The Role of Histopathological Images in Designing and Exploring Experimental Models.

作者信息

Tătaru Iulian, Moldovanu Simona, Dragostin Oana-Maria, Chiţescu Carmen Lidia, Zamfir Alexandra-Simona, Dragostin Ionut, Strat Liliana, Zamfir Carmen Lăcrămioara

机构信息

Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.

Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical Engineering and Electronics, "Dunarea de Jos" University of Galati, 800146 Galati, Romania.

出版信息

Biomedicines. 2025 Jun 18;13(6):1494. doi: 10.3390/biomedicines13061494.

Abstract

Histopathological images represent a valuable data source for pathologists, who can provide clinicians with essential landmarks for complex pathologies. The development of sophisticated computational models for histopathological images has received significant attention in recent years, but most of them rely on free datasets. Motivated by this drawback, the authors created an original histopathological image dataset that resulted from an animal experimental model, acquiring images from normal female rats/rats with experimentally induced diabetes mellitus (DM)/rats who received an antidiabetic therapy with a synthetic compound (AD_SC). Images were acquired from vaginal, uterine, and ovarian samples from both MD and AD_DC specimens. The experiment received the approval of the Medical Ethics Committee of the "Gr. T. Popa" University of Medicine and Pharmacy, Iași, Romania (Approval No. 169/22.03.2022). The novelty of the study consists of the following aspects. The first is the use of a diabetes-induced animal model to evaluate the impact of an antidiabetic therapy with a synthetic compound in female rats, focusing on three distinct organs of the reproductive system (vagina, ovary, and uterus), to provide a more comprehensive understanding of how diabetes affects female reproductive health as a whole. The second comprises image classification with a custom-built convolutional neural network (CB-CNN), the extraction of textural features (contrast, entropy, energy, and homogeneity), and their classification with PyCaret Auto Machine Learning (AutoML). Experimental findings indicate that uterine tissue, both for MD and AD_DC, can be diagnosed with an accuracy of 94.5% and 85.8%, respectively. The Linear Discriminant Analysis (LDA) classifier features indicate a high accuracy of 86.3% when supplied with features extracted from vaginal tissue. Our research underscores the efficacy of classifying with two AI algorithms, CNN and machine learning.

摘要

组织病理学图像是病理学家的宝贵数据源,他们可以为临床医生提供复杂病理学的重要标志。近年来,用于组织病理学图像的复杂计算模型的开发受到了广泛关注,但其中大多数依赖于免费数据集。受此缺点的启发,作者创建了一个源自动物实验模型的原始组织病理学图像数据集,从正常雌性大鼠/实验性诱导糖尿病(DM)的大鼠/接受合成化合物抗糖尿病治疗(AD_SC)的大鼠获取图像。从MD和AD_DC标本的阴道、子宫和卵巢样本中获取图像。该实验获得了罗马尼亚雅西“Gr. T. Popa”医科药科大学医学伦理委员会的批准(批准号169/22.03.2022)。该研究的新颖之处包括以下几个方面。首先是使用糖尿病诱导动物模型来评估合成化合物抗糖尿病治疗对雌性大鼠的影响,重点关注生殖系统的三个不同器官(阴道、卵巢和子宫),以更全面地了解糖尿病如何整体影响女性生殖健康。其次包括使用定制卷积神经网络(CB-CNN)进行图像分类、纹理特征(对比度、熵、能量和均匀性)的提取以及使用PyCaret自动机器学习(AutoML)进行分类。实验结果表明,MD和AD_DC的子宫组织诊断准确率分别为94.5%和85.8%。当提供从阴道组织提取的特征时,线性判别分析(LDA)分类器特征显示出86.3%的高准确率。我们的研究强调了使用CNN和机器学习这两种人工智能算法进行分类的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6628/12190240/2454107450d4/biomedicines-13-01494-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验