Sirotti Elise, Scaparra Bianca, Böhm Stefan, Pantle Florian, Wagner Laura I, Rauh Felix, Munnik Frans, Jiang Chang-Ming, Kuhl Matthias, Müller Kai, Eichhorn Johanna, Streibel Verena, Sharp Ian D
Walter Schottky Institute, Technical University of Munich, Garching 85748, Germany.
Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):7958-7968. doi: 10.1021/acsami.4c16921. Epub 2025 Jan 28.
Zinc nitride (ZnN) comprises earth-abundant elements, possesses a small direct bandgap, and is characterized by high electron mobility. While these characteristics make the material a promising compound semiconductor for various optoelectronic applications, including photovoltaics and thin-film transistors, it commonly exhibits unintentional degenerate n-type conductivity. This degenerate character has significantly impeded the development of ZnN for technological applications and is commonly assumed to arise from incorporation of oxygen impurities. However, consistent understanding and control of the role of native and impurity defects on the optoelectronic properties of this otherwise promising semiconductor have not yet emerged. Here, we systematically synthesize epitaxial ZnN thin films with controlled oxygen impurity concentrations of up to 20 at % by plasma-assisted molecular beam epitaxy (PA-MBE). Contrary to expectations, we find that oxygen does not lead to degenerate conductivity but instead serves as a compensating defect, the control of which can be used to achieve nondegenerate semiconducting thin films with free electron concentrations in the range of 10 cm, while retaining high mobilities in excess of 200 cm V s. This understanding of the beneficial role of oxygen thus provides a route to controllably synthesize nondegenerate O-doped ZnN for optoelectronic applications.
氮化锌(ZnN)由地球上储量丰富的元素组成,具有较小的直接带隙,并以高电子迁移率为特征。虽然这些特性使该材料成为用于包括光伏和薄膜晶体管在内的各种光电子应用的有前景的化合物半导体,但它通常表现出非故意的简并n型导电性。这种简并特性严重阻碍了ZnN在技术应用中的发展,通常认为这是由氧杂质的掺入引起的。然而,对于这种原本很有前景的半导体,尚未出现对本征缺陷和杂质缺陷在其光电子性质方面的作用的一致理解和控制方法。在此,我们通过等离子体辅助分子束外延(PA-MBE)系统地合成了氧杂质浓度控制高达20 at%的外延ZnN薄膜。与预期相反,我们发现氧不会导致简并导电性,而是作为一种补偿缺陷,对其进行控制可用于实现自由电子浓度在10 cm范围内的非简并半导体薄膜,同时保持超过200 cm V s的高迁移率。因此,对氧的有益作用的这种理解为可控地合成用于光电子应用的非简并O掺杂ZnN提供了一条途径。