Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-338, Republic of Korea.
Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea.
Sci Rep. 2016 Apr 21;6:24787. doi: 10.1038/srep24787.
High-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism. First-principles calculations indicate that excess vacant nitrogen sites (VN) in N-rich ZnON disrupt the local electron conduction paths, which may be restored by having oxygen anions inserted therein. The latter are anticipated to enhance the electron mobility, and the exact process parameters that induce such a phenomenon can only be found experimentally. Contour plots of the Hall mobility and carrier density with respect to the RF power and O2 to N2 gas flow rate ratio indicate the existence of an optimum region where maximum electron mobility is obtained. Using ZnON films grown under the optimum conditions, the fabrication of high-performance devices with field-effect mobility values exceeding 120 cm(2)/Vs is demonstrated based on simple reactive RF sputtering methods.
采用射频溅射法,以 Zn 金属靶为原料,在 Ar、N2 和 O2 混合气体的等离子体中生长高迁移率的锌氧氮化物(ZnON)半导体。通过系统地调整射频功率和 O2 与 N2 气体的流速,制备了一系列具有不同相对阴离子含量的 ZnON 薄膜。发现载流子密度受阴离子组成的影响很大,而电子迁移率则由相当复杂的机制决定。第一性原理计算表明,富 N 的 ZnON 中的过剩空位氮(VN)会破坏局部电子传导路径,而其中插入氧阴离子则可能恢复其传导能力。后者有望提高电子迁移率,而诱导这种现象的确切工艺参数只能通过实验来找到。霍尔迁移率和载流子密度相对于射频功率和 O2 与 N2 气体流速比的等高线图表明,存在一个最佳区域,在此区域可以获得最大的电子迁移率。基于简单的反应性射频溅射方法,使用在最佳条件下生长的 ZnON 薄膜,成功制备了场效应迁移率超过 120 cm2/Vs 的高性能器件。