Jiang Chang-Ming, Wagner Laura I, Horton Matthew K, Eichhorn Johanna, Rieth Tim, Kunzelmann Viktoria F, Kraut Max, Li Yanbo, Persson Kristin A, Sharp Ian D
Walter Schottky Institute and Physics Department, Technische Universität München, 85748 Garching, Germany.
Mater Horiz. 2021 Jun 1;8(6):1744-1755. doi: 10.1039/d1mh00017a. Epub 2021 Apr 1.
The binary Ta-N chemical system includes several compounds with notable prospects in microelectronics, solar energy harvesting, and catalysis. Among these, metallic TaN and semiconducting TaN have garnered significant interest, in part due to their synthetic accessibility. However, tantalum sesquinitride (TaN) possesses an intermediate composition and largely unknown physical properties owing to its metastable nature. Herein, TaN is directly deposited by reactive magnetron sputtering and its optoelectronic properties are characterized. Combining these results with density functional theory provides insights into the critical role of oxygen in both synthesis and electronic structure. While the inclusion of oxygen in the process gas is critical to TaN formation, the resulting oxygen incorporation in structural vacancies drastically modifies the free electron concentration in the as-grown material, thus leading to a semiconducting character with a 1.9 eV bandgap. Reducing the oxygen impurity concentration via post-synthetic ammonia annealing increases the conductivity by seven orders of magnitude and yields the metallic characteristics of a degenerate semiconductor, consistent with theoretical predictions. Thus, this inverse oxygen doping approach - by which the carrier concentration is reduced by the oxygen impurity - offers a unique opportunity to tailor the optoelectronic properties of TaN for applications ranging from photochemical energy conversion to advanced photonics.
二元Ta-N化学体系包含几种在微电子、太阳能收集和催化领域具有显著前景的化合物。其中,金属TaN和半导体TaN引起了广泛关注,部分原因是它们易于合成。然而,三氮化二钽(TaN)具有中间组成,由于其亚稳性质,其物理性质在很大程度上未知。在此,通过反应磁控溅射直接沉积TaN,并对其光电性质进行表征。将这些结果与密度泛函理论相结合,深入了解了氧在合成和电子结构中的关键作用。虽然工艺气体中氧的加入对TaN的形成至关重要,但在结构空位中形成的氧掺入极大地改变了生长材料中的自由电子浓度,从而导致带隙为1.9 eV的半导体特性。通过合成后氨退火降低氧杂质浓度,电导率提高了七个数量级,并产生了简并半导体的金属特性,这与理论预测一致。因此,这种反向氧掺杂方法——通过氧杂质降低载流子浓度——为调整TaN的光电性质提供了独特的机会,可用于从光化学能量转换到先进光子学等各种应用。