Sirotti Elise, Böhm Stefan, Grötzner Gabriel, Christis Maximilian, Wagner Laura I, Wolz Lukas, Munnik Frans, Eichhorn Johanna, Stutzmann Martin, Streibel Verena, Sharp Ian D
Walter Schottky Institute, Technical University of Munich, 85748 Garching, Germany.
Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.
Mater Horiz. 2025 Mar 17;12(6):1971-1980. doi: 10.1039/d4mh01525h.
Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.4 and 2.0 eV and control over the charge carrier concentration across six orders of magnitude, all while maintaining high mobilities between 5 and 70 cm V s. The combination of favorable electronic properties, low synthesis temperatures, and earth-abundant elements makes amorphous Ca-Zn-N highly promising for future sustainable electronics. Moreover, the successful synthesis of such materials, as well as their broad optical and electrical tunability, paves the way for a new class of tailored functional materials: amorphous nitride semiconductors - ANSs.
半导体三元氮化物是一类很有前景的材料,近年来受到了越来越多的关注,但由于氮空位和替代氧的低缺陷形成能,它们通常表现出高自由电子浓度,导致简并n型掺杂。为了实现非简并行为,我们现在研究了一族非晶态钙锌氮(Ca-Zn-N)薄膜。通过调整金属阳离子比例,我们展示了在1.4至2.0 eV之间的带隙可调性,并在六个数量级范围内控制电荷载流子浓度,同时保持5至70 cm V s之间的高迁移率。良好的电子性能、低合成温度和丰富的地球元素相结合,使得非晶态Ca-Zn-N对未来的可持续电子学极具前景。此外,这类材料的成功合成及其广泛的光学和电学可调性,为一类新型定制功能材料——非晶态氮化物半导体(ANSs)铺平了道路。