Galvis Johanna, Guyon Joris, Daubon Thomas, Nikolski Macha
University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France.
University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France.
Bio Protoc. 2025 Jan 20;15(2):e5168. doi: 10.21769/BioProtoc.5168.
Stable-isotope resolved metabolomics (SIRM) is a powerful approach for characterizing metabolic states in cells and organisms. By incorporating isotopes, such as C, into substrates, researchers can trace reaction rates across specific metabolic pathways. Integrating metabolomics data with gene expression profiles further enriches the analysis, as we demonstrated in our prior study on glioblastoma metabolic symbiosis. However, the bioinformatics tools for analyzing tracer metabolomics data have been limited. In this protocol, we encourage the researchers to use SIRM and transcriptomics data and to perform the downstream analysis using our software tool DIMet. Indeed, DIMet is the first comprehensive tool designed for the differential analysis of tracer metabolomics data, alongside its integration with transcriptomics data. DIMet facilitates the analysis of stable-isotope labeling and metabolic abundances, offering a streamlined approach to infer metabolic changes without requiring complex flux analysis. Its pathway-based "metabologram" visualizations effectively integrate metabolomics and transcriptomics data, offering a versatile platform capable of analyzing corrected tracer datasets across diverse systems, organisms, and isotopes. We provide detailed steps for sample preparation and data analysis using DIMet through its intuitive, web-based Galaxy interface. To showcase DIMet's capabilities, we analyzed knockout glioblastoma cell lines compared to controls. Accessible to all researchers through Galaxy, DIMet is free, user-friendly, and open source, making it a valuable resource for advancing metabolic research. Key features • Glioblastoma tumor spheroids in vitro replicate tumors' three-dimensional structure and natural nutrient, metabolite, and gas gradients, providing a more realistic model of tumor biology. • Joint analysis of tracer metabolomics and transcriptomics datasets provides deeper insights into the metabolic states of cells. • DIMet is a web-based tool for differential analysis and seamless integration of metabolomics and transcriptomics data, making it accessible and user-friendly. • DIMet enables researchers to infer metabolic changes, offering intuitive and visually appealing "metabologram" outputs, surpassing conventional visual representations commonly used in the field.
稳定同位素分辨代谢组学(SIRM)是一种用于表征细胞和生物体内代谢状态的强大方法。通过将碳等同位素掺入底物中,研究人员可以追踪特定代谢途径中的反应速率。正如我们在先前关于胶质母细胞瘤代谢共生的研究中所证明的那样,将代谢组学数据与基因表达谱相结合可进一步丰富分析内容。然而,用于分析示踪代谢组学数据的生物信息学工具一直很有限。在本方案中,我们鼓励研究人员使用SIRM和转录组学数据,并使用我们的软件工具DIMet进行下游分析。事实上,DIMet是首个专门为示踪代谢组学数据的差异分析而设计的综合工具,同时还能与转录组学数据进行整合。DIMet有助于对稳定同位素标记和代谢丰度进行分析,提供了一种无需复杂通量分析即可推断代谢变化的简化方法。其基于途径的“代谢图谱”可视化有效地整合了代谢组学和转录组学数据,提供了一个通用平台,能够分析跨不同系统、生物体和同位素的校正示踪数据集。我们通过其直观的基于网络的Galaxy界面提供了使用DIMet进行样品制备和数据分析的详细步骤。为了展示DIMet的功能,我们分析了与对照相比的胶质母细胞瘤基因敲除细胞系。通过Galaxy,所有研究人员都可以使用DIMet,它免费、用户友好且开源,是推进代谢研究的宝贵资源。关键特性 • 体外培养的胶质母细胞瘤肿瘤球体可复制肿瘤的三维结构以及天然营养、代谢物和气体梯度,提供了更逼真的肿瘤生物学模型。 • 对示踪代谢组学和转录组学数据集进行联合分析可更深入地了解细胞的代谢状态。 • DIMet是一个基于网络的工具,用于代谢组学和转录组学数据的差异分析及无缝整合,易于使用且用户友好。 • DIMet使研究人员能够推断代谢变化,提供直观且视觉上吸引人的“代谢图谱”输出,超越了该领域常用的传统视觉表示方法。