Shi Lei, Cai Weizheng, Zhang Feng, Li Siqi, Liu Xinyang, Liu Yunyi, Ren Peidong, Li Bin, Liu Song, Liu Bin
Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China.
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Angew Chem Int Ed Engl. 2025 Apr 25;64(18):e202424345. doi: 10.1002/anie.202424345. Epub 2025 Apr 1.
Electrochemical 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) offers a promising route to transform biomass into value-added chemicals. However, the competing oxygen evolution reaction (OER) greatly limits the HMFOR selectivity. Herein, we report a facile doping strategy to engineer oxygen intermediates adsorption on amorphous NiFe alloys to boost highly selective electrochemical HMF oxidation to produce 2,5-furandicarboxylic acid (FDCA), among which, amorphous Mn-doped NiFeB alloy displays a low HMFOR onset potential of 1.35 V vs. RHE, achieving 100 % HMF conversion with 88 % FDCA selectivity at an applied potential of 1.4 V vs. RHE, outperforming amorphous NiFeB (73 % FDCA selectivity) and Mo-doped NiFeB (65 % FDCA selectivity) alloys. Experimental characterizations suggest that the introduction of Mn/Mo into amorphous NiFeB alloy can increase/decrease its electronic density and thus strengthen/weaken oxygen intermediates adsorption. Operando experiments indicate that the amorphous Mn-doped NiFeB alloy can significantly reduce the onset potential to form active Ni species, which spontaneously react with HMF via nucleophile dehydrogenation to form FDCA. Furthermore, in situ infrared spectroscopy measurements verify that the HMF oxidation pathway follows the 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) route rather than the 2,5-diformyfuran (DFF) route.
电化学5-羟甲基糠醛(HMF)氧化反应(HMFOR)为将生物质转化为高附加值化学品提供了一条很有前景的途径。然而,竞争性析氧反应(OER)极大地限制了HMFOR的选择性。在此,我们报道了一种简便的掺杂策略,用于设计氧中间体在非晶态NiFe合金上的吸附,以促进高选择性电化学HMF氧化生成2,5-呋喃二甲酸(FDCA),其中,非晶态Mn掺杂的NiFeB合金相对于可逆氢电极(RHE)显示出1.35 V的低HMFOR起始电位,在相对于RHE为1.4 V的外加电位下实现了100%的HMF转化率和88%的FDCA选择性,优于非晶态NiFeB(73%的FDCA选择性)和Mo掺杂的NiFeB(65%的FDCA选择性)合金。实验表征表明,将Mn/Mo引入非晶态NiFeB合金可增加/降低其电子密度,从而增强/减弱氧中间体的吸附。原位实验表明,非晶态Mn掺杂的NiFeB合金可显著降低形成活性Ni物种的起始电位,该活性Ni物种通过亲核脱氢与HMF自发反应形成FDCA。此外,原位红外光谱测量证实,HMF氧化途径遵循5-羟甲基-2-呋喃甲酸(HMFCA)路线而非2,5-二甲酰基呋喃(DFF)路线。