Yao Zengji, Wang Xing, Ma Zihao, Han Ying
The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Key Laboratory of High Value Utilization of Botanical Resources of China, Light Industry College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
J Colloid Interface Sci. 2025 Oct;695:137752. doi: 10.1016/j.jcis.2025.137752. Epub 2025 Apr 29.
Enhancing the electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) by modulating the surface properties of metal-organic framework-derived (MOF-derived) carbon substrates is an efficient approach. In this work, we successfully fabricated high-performance catalysts for the electrocatalytic oxidation reaction of HMF (HMFOR) to FDCA by introducing sulfur vacancies on NiFe alloy nanoparticle loaded MOF-derived carbon materials. The experimental results show that the use of MOF-derived carbon to support NiFe alloys can inherit the microporous and mesoporous structures of MOF precursors, provide a larger specific surface area, and can effectively limit the agglomeration of NiFe nanoparticles during pyrolysis, providing more active sites. Furthermore, the introduction of sulfur vacancies can lower the reconstruction energy barrier of the NiFe alloy, thereby facilitating the reconstruction of Ni into NiOOH with catalytic activity. The catalytic performance of the prepared catalysts exhibit excellent HMF conversions (100 %), FDCA yield (96.2 %) and Faraday Efficiency (96 %). Density functional theory (DFT) calculations indicate that 5-Hydroxymethyl-2- furancarboxylic acid (HMFCA) is the preferred pathway for the reaction and that the potential limiting step in the overall reaction is the oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to FDCA. This work is expected to provide a unique perspective for improving the catalytic activity of non-precious metal nickel-based catalysts and high value conversion of biomass products.
通过调节金属有机框架衍生(MOF衍生)碳基底的表面性质来增强5-羟甲基糠醛(HMF)电催化氧化为2,5-呋喃二甲酸(FDCA)是一种有效的方法。在这项工作中,我们通过在负载NiFe合金纳米颗粒的MOF衍生碳材料上引入硫空位,成功制备了用于HMF电催化氧化反应(HMFOR)生成FDCA的高性能催化剂。实验结果表明,使用MOF衍生碳负载NiFe合金可以继承MOF前驱体的微孔和介孔结构,提供更大的比表面积,并能有效限制热解过程中NiFe纳米颗粒的团聚,提供更多活性位点。此外,硫空位的引入可以降低NiFe合金的重构能垒,从而促进Ni重构为具有催化活性的NiOOH。所制备催化剂的催化性能表现出优异的HMF转化率(100%)、FDCA产率(96.2%)和法拉第效率(96%)。密度泛函理论(DFT)计算表明,5-羟甲基-2-呋喃甲酸(HMFCA)是该反应的优选途径,并且整个反应中的潜在限速步骤是5-甲酰基-2-呋喃甲酸(FFCA)氧化为FDCA。这项工作有望为提高非贵金属镍基催化剂的催化活性和生物质产物的高值转化提供独特的视角。