Suppr超能文献

基于SE-DenseNet网络的表面肌电信号手势识别

Gesture recognition from surface electromyography signals based on the SE-DenseNet network.

作者信息

Xiang Ying, Zheng Wei, Tang Jiajia, Dong You, Pang Yuhao

机构信息

College of Ocean, Jiangsu University of Science and Technology, Zhenjiang, China.

出版信息

Biomed Tech (Berl). 2025 Jan 29;70(3):207-216. doi: 10.1515/bmt-2024-0282. Print 2025 Jun 26.

Abstract

OBJECTIVES

In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.

METHODS

This paper proposes a fusion model of Squeeze-and-Excitation Networks (SE) and DenseNet, inserting attention mechanism between DenseBlock and Transition to focus on the most important information, improving feature representation ability, and effectively solving the problem of gradient vanishing.

RESULTS

This proposed method was tested on the electromyographic gesture datasets NinaPro DB2 and DB4, achieving accuracies of 85.93 and 82.39 % respectively. Through ablation experiments, it was found that the method based on DenseNet-101 as the backbone model produced the best results.

CONCLUSIONS

Compared with existing models, this proposed method has better robustness and generalizability in gesture recognition, providing new ideas for the development of sEMG signal gesture recognition applications in the future.

摘要

目的

近年来,基于机器学习和深度学习技术的利用表面肌电图(sEMG)信号进行手势识别的研究取得了重大进展。sEMG手势识别研究的主要动机是提供更自然、便捷和个性化的人机交互,这使得该领域的研究在康复技术方面具有可观的应用前景。然而,现有的手势识别算法在全局特征捕获、模型计算复杂度和通用性方面仍需进一步改进。

方法

本文提出了一种挤压激励网络(SE)和密集连接网络(DenseNet)的融合模型,在密集块(DenseBlock)和过渡层(Transition)之间插入注意力机制,以聚焦最重要的信息,提高特征表示能力,并有效解决梯度消失问题。

结果

该方法在肌电图手势数据集NinaPro DB2和DB4上进行了测试,准确率分别达到了85.93%和82.39%。通过消融实验发现,以DenseNet-101作为骨干模型的方法产生了最佳结果。

结论

与现有模型相比,该方法在手势识别中具有更好的鲁棒性和通用性,为未来sEMG信号手势识别应用的发展提供了新思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验