Suppr超能文献

基于多视图融合网络的表面肌电信号手势识别

Multi-View Fusion Network-Based Gesture Recognition Using sEMG Data.

出版信息

IEEE J Biomed Health Inform. 2024 Aug;28(8):4432-4443. doi: 10.1109/JBHI.2023.3287979. Epub 2024 Aug 6.

Abstract

sEMG(surface electromyography) signals have been widely used in rehabilitation medicine in the past decades because of their non-invasive, convenient and informative features, especially in human action recognition, which has developed rapidly. However, the research on sparse EMG in multi-view fusion has made less progress compared to high-density EMG signals, and for the problem of how to enrich sparse EMG feature information, a method that can effectively reduce the information loss of feature signals in the channel dimension is needed. In this article, a novel IMSE (Inception-MaxPooling-Squeeze- Excitation) network module is proposed to reduce the loss of feature information during deep learning. Then, multiple feature encoders are constructed to enrich the information of sparse sEMG feature maps based on the multi-core parallel processing method in multi-view fusion networks, while SwT (Swin Transformer) is used as the classification backbone network. By comparing the feature fusion effects of different decision layers of the multi-view fusion network, it is experimentally obtained that the fusion of decision layers can better improve the classification performance of the network. In NinaPro DB1, the proposed network achieves 93.96% average accuracy in gesture action classification with the feature maps obtained in 300ms time window, and the maximum variation range of action recognition rate of individuals is less than 11.2%. The results show that the proposed framework of multi-view learning plays a good role in reducing individuality differences and augmenting channel feature information, which provides a certain reference for non-dense biosignal pattern recognition.

摘要

表面肌电 (sEMG) 信号因其非侵入性、方便和信息丰富的特点,在过去几十年中在康复医学中得到了广泛应用,特别是在人类动作识别方面,发展迅速。然而,与高密度 EMG 信号相比,稀疏 EMG 在多视图融合方面的研究进展较少,并且对于如何丰富稀疏 EMG 特征信息的问题,需要一种可以有效减少特征信号在通道维度上的信息丢失的方法。本文提出了一种新颖的 IMSE(Inception-MaxPooling-Squeeze-Excitation)网络模块,用于减少深度学习过程中特征信息的丢失。然后,基于多视图融合网络中的多核并行处理方法,构建了多个特征编码器,以丰富稀疏 sEMG 特征图的信息,同时使用 SwT(Swin Transformer)作为分类骨干网络。通过比较多视图融合网络不同决策层的特征融合效果,实验得到融合决策层可以更好地提高网络的分类性能。在 NinaPro DB1 上,所提出的网络在 300ms 时间窗口内获得特征图时,平均准确率达到 93.96%,个体动作识别率的最大变化范围小于 11.2%。结果表明,所提出的多视图学习框架在减少个体差异和增强通道特征信息方面发挥了良好的作用,为非密集生物信号模式识别提供了一定的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验