Suppr超能文献

一种基于多尺度融合卷积和通道注意力的高效表面肌电手势识别算法。

An efficient surface electromyography-based gesture recognition algorithm based on multiscale fusion convolution and channel attention.

作者信息

Jiang Bin, Wu Hao, Xia Qingling, Xiao Hanguang, Peng Bo, Wang Li, Zhao Yun

机构信息

School of Artificial Intelligence, Chongqing University of Technology, Chongqing, 401135, China.

School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):30867. doi: 10.1038/s41598-024-81369-z.

Abstract

In the field of rehabilitation, although deep learning have been widely used in multitype gesture recognition via surface electromyography (sEMG), their higher algorithmic complexity often leads to low computationally inefficient, which compromise their practicality. To achieve more efficient multitype recognition, We propose the Residual-Inception-Efficient (RIE) model, which integrates Inception and efficient channel attention (ECA). The Inception, which is a multiscale fusion convolutional module, is adopted to enhance the ability to extract sEMG features. It uses fast dimensionality reduction, asymmetric convolution decomposition, and pooling to suppress the accumulation of parameters, then reducing the algorithmic complexity; The ECA is adopted to reweight the output features of Inception in different channels, enabling the RIE model to focus on information that is more relevant to gestures. 52-, 49-, and 52-class gesture recognition experiments are conducted on NinaPro DB1, DB3, and DB4 datasets, which contain 14,040, 3234, and 3120 gesture samples, respectively. RIE model proposed in this study achieves accuracies of 88.27%, 69.52%, and 84.55% on the three datasets, exhibiting excellent recognition accuracy and strong generalization ability. Moreover, this method reduces the algorithmic complexity from both spatial and temporal aspects, rendering it smaller in size and faster in computation compared to other lightweight algorithms. Therefore, the proposed RIE model possesses both lightweight computational requirements and reliable performance, providing an efficient deep learning method for gesture recognition based on sEMG.

摘要

在康复领域,尽管深度学习已广泛应用于通过表面肌电图(sEMG)进行的多类型手势识别,但它们较高的算法复杂度往往导致计算效率低下,这影响了它们的实用性。为了实现更高效的多类型识别,我们提出了残差-inception-高效(RIE)模型,该模型集成了Inception和高效通道注意力(ECA)。Inception是一个多尺度融合卷积模块,用于增强提取sEMG特征的能力。它使用快速降维、非对称卷积分解和池化来抑制参数积累,从而降低算法复杂度;采用ECA对Inception在不同通道的输出特征进行重新加权,使RIE模型能够专注于与手势更相关的信息。在NinaPro DB1、DB3和DB4数据集上进行了52类、49类和52类手势识别实验,这些数据集分别包含14040、3234和3120个手势样本。本研究提出的RIE模型在这三个数据集上的准确率分别为88.27%、69.52%和84.55%,表现出优异的识别准确率和强大的泛化能力。此外,该方法从空间和时间两个方面降低了算法复杂度,与其他轻量级算法相比,其尺寸更小、计算速度更快。因此,所提出的RIE模型具有轻量级的计算需求和可靠的性能,为基于sEMG的手势识别提供了一种高效的深度学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e9/11680932/9ed75236d34e/41598_2024_81369_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验