Suppr超能文献

生殖技术中胚胎移植的智能决策系统:一种基于机器学习的方法。

An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach.

作者信息

Badr Sanaa, Tahri Meryem, Maanan Mohamed, Kašpar Jan, Yousfi Noura

机构信息

Department of Mathematics and Computer Science, Laboratory of Analysis, Modeling and Simulation, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco.

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CZU), Praha-Suchdol, Czech Republic.

出版信息

Syst Biol Reprod Med. 2025 Dec;71(1):13-28. doi: 10.1080/19396368.2024.2445831. Epub 2025 Jan 28.

Abstract

Infertility has emerged as a significant public health concern, with assisted reproductive technology (ART) is a last-resort treatment option. However, ART's efficacy is limited by significant financial cost and physical discomfort. The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. Binary classification models were developed to classify cases into two groups: those transferring two or fewer embryos and those transferring three or four. Four popular ML algorithms were used, including random forest (RF), logistic regression (LR), support vector machine (SVM), and artificial neural network (ANN), considering seven criteria: the woman's age, sperm origin, the developmental qualities of four potential embryos, infertility duration, assessment of the woman, morphological qualities of the four best embryos on the day of transfer, and number of oocytes extracted. The stratified 3-fold cross-validation results show that the SVM model obtained the highest average accuracy (95.83%) and demonstrated the best overall performance, closely followed by the ANN and LR models with an average accuracy equal to 91.67%. The RF model achieved a slightly lower average accuracy (88.89%), which demonstrated the lowest variability. Testing on a new dataset revealed all models performed well, with ANN and SVM models classified all test set instances correctly, while the RF and LR models achieved 91.68% accuracy. These results highlight the superior generalization and effectiveness of the ANN and SVM models in guiding ART decisions.

摘要

不孕症已成为一个重大的公共卫生问题,辅助生殖技术(ART)是一种最后的治疗选择。然而,ART的疗效受到高昂的经济成本和身体不适的限制。本研究的目的是利用通过文献综述确定的不育夫妇的数据,建立机器学习(ML)决策支持模型,以预测胚胎移植数量的最佳范围。开发了二元分类模型,将病例分为两组:移植两个或更少胚胎的病例和移植三个或四个胚胎的病例。使用了四种流行的ML算法,包括随机森林(RF)、逻辑回归(LR)、支持向量机(SVM)和人工神经网络(ANN),考虑了七个标准:女性年龄、精子来源、四个潜在胚胎的发育质量、不孕持续时间、女性评估、移植当天四个最佳胚胎的形态质量以及提取的卵母细胞数量。分层3折交叉验证结果表明,SVM模型获得了最高的平均准确率(95.83%),并表现出最佳的整体性能,紧随其后的是ANN和LR模型,平均准确率为91.67%。RF模型的平均准确率略低(88.89%),其变异性最低。在新数据集上进行测试表明,所有模型表现良好,ANN和SVM模型正确分类了所有测试集实例,而RF和LR模型的准确率达到了91.68%。这些结果突出了ANN和SVM模型在指导ART决策方面的卓越泛化能力和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验