Suppr超能文献

系统分析揭示了口腔鳞状细胞癌中强大的唾液微生物特征和宿主-微生物组扰动。

Systematic analyses uncover robust salivary microbial signatures and host-microbiome perturbations in oral squamous cell carcinoma.

作者信息

Han Zewen, Hu Yichen, Lin Xin, Cheng Hongyu, Dong Biao, Liu Xuan, Wu Buling, Xu Zhenjiang Zech

机构信息

Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, Guangdong, China.

Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China.

出版信息

mSystems. 2025 Feb 18;10(2):e0124724. doi: 10.1128/msystems.01247-24. Epub 2025 Jan 28.

Abstract

UNLABELLED

Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as , , , , and in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection.

IMPORTANCE

The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions.

摘要

未标注

口腔鳞状细胞癌(OSCC)是口腔颌面部常见的恶性肿瘤,预后较差。口腔微生物群在该疾病的发病机制中发挥潜在作用。然而,个别研究的结果并不一致,对与OSCC相关的微生物群失调的全面理解仍然难以捉摸。在此,我们通过整合11个公开可用的数据集进行了大规模的荟萃分析,这些数据集包含OSCC患者和健康对照的唾液微生物群谱。在校正批次效应后,我们观察到与健康对照相比,OSCC唾液微生物群的α多样性显著升高,β多样性模式明显不同。利用随机效应模型,我们在各数据集中确定了与OSCC相关的强大微生物特征,包括OSCC样本中如 、 、 、 和 等分类群的富集。由这些微生物标记构建的机器学习模型准确预测了OSCC状态,突出了它们作为非侵入性诊断生物标志物的潜力。有趣的是,我们的分析表明,正常唾液微生物群中与年龄和性别相关的特征在OSCC中被破坏,这表明复杂的宿主-微生物相互作用受到了干扰。总体而言,我们的研究结果揭示了OSCC中口腔微生物群的复杂变化,为疾病病因提供了新的见解,并为基于微生物群的诊断和治疗策略铺平了道路。鉴于唾液微生物群可以反映宿主的整体健康状况,并且唾液采样是一种安全、非侵入性的方法,在高危OSCC人群中对唾液微生物群进行更广泛的筛查可能是值得的,这对早期检测具有重要意义。

重要性

口腔中存在着多样的微生物群落,其在全身和口腔健康中起着至关重要的作用。积累的研究调查了与口腔癌相关的唾液微生物群的显著差异,表明微生物群失调可能导致口腔鳞状细胞癌(OSCC)的发病机制。然而,与OSCC相关的具体微生物变化仍存在争议。这项荟萃分析揭示了唾液微生物群的强大变化。使用差异操作分类单元的机器学习模型准确预测了OSCC状态,突出了唾液微生物群作为非侵入性诊断生物标志物的潜力。有趣的是,正常唾液微生物群中与年龄和性别相关的特征在OSCC中被破坏,这表明宿主-微生物相互作用受到了干扰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e237/11834404/57be39dc2859/msystems.01247-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验