Ding Fangchao, Zhuang Yizhen, Chen Shengxiang
Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Department of Medical Record Office, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Ann Surg Oncol. 2025 May;32(5):3372-3381. doi: 10.1245/s10434-025-16940-7. Epub 2025 Jan 28.
This study aimed to develop a dynamic survival prediction model utilizing conditional survival (CS) analysis and machine learning techniques for gastric neuroendocrine carcinomas (GNECs).
Data from the Surveillance, Epidemiology, and End Results (SEER) database (2004-2015) were analyzed and split into training and validation groups (7:3 ratio). CS profiles for patients with GNEC were examined in the full cohort. We utilized random survival forests (RSFs) and least absolute shrinkage and selection operator (LASSO) regression, alongside stepwise Cox regression, for variable selection. A CS-based nomogram was developed on the basis of key prognostic factors, followed by risk stratification and model validation.
We included 654 patients with GNEC in our study, with 457 assigned to the training set and 197 to the validation set. The CS analysis demonstrated that the probability of achieving 5-year CS improved from 48% immediately after diagnosis to 68%, 81%, 88%, and 94% after surviving an additional year (i.e., at 1, 2, 3, and 4 years, respectively). Through the use of RSFs and LASSO regression, combined with multivariable regression analysis, we identified the optimal combination of prognostic factors, which included age, tumor grade, tumor stage, surgery, and chemotherapy. Utilizing these prognostic indicators, we successfully developed a nomogram model that incorporated CS and effectively stratified these patients by risk. Subsequent performance analyses further validated the superior efficacy of the nomogram.
Our study highlights the value of CS in GNEC prognosis. The nomogram offers dynamic, individualized survival predictions, supporting personalized treatment strategies.
本研究旨在利用条件生存(CS)分析和机器学习技术开发一种用于胃神经内分泌癌(GNEC)的动态生存预测模型。
分析监测、流行病学和最终结果(SEER)数据库(2004 - 2015年)中的数据,并按7:3的比例分为训练组和验证组。在整个队列中检查GNEC患者的CS曲线。我们使用随机生存森林(RSF)、最小绝对收缩和选择算子(LASSO)回归以及逐步Cox回归进行变量选择。基于关键预后因素开发了一个基于CS的列线图,随后进行风险分层和模型验证。
我们的研究纳入了654例GNEC患者,其中457例被分配到训练集,197例被分配到验证集。CS分析表明,达到5年CS的概率从诊断后立即的48%提高到再存活一年后(即分别在1、2、3和4年时)的68%、81%、88%和94%。通过使用RSF和LASSO回归,并结合多变量回归分析,我们确定了预后因素的最佳组合,包括年龄、肿瘤分级、肿瘤分期、手术和化疗。利用这些预后指标,我们成功开发了一个纳入CS的列线图模型,并有效地对这些患者进行了风险分层。随后的性能分析进一步验证了列线图的卓越疗效。
我们的研究突出了CS在GNEC预后中的价值。列线图提供了动态、个性化的生存预测,支持个性化治疗策略。