Suppr超能文献

临床医生的大语言模型指南:以幻觉为重点的总体视角

The Clinicians' Guide to Large Language Models: A General Perspective With a Focus on Hallucinations.

作者信息

Roustan Dimitri, Bastardot François

机构信息

Emergency Medicine Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.

Medical Directorate, Lausanne University Hospital, Lausanne, Switzerland.

出版信息

Interact J Med Res. 2025 Jan 28;14:e59823. doi: 10.2196/59823.

Abstract

Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, it is therefore essential that clinicians be aware of the basic risks associated with the use of these models. Namely, a significant risk associated with the use of LLMs is their potential to create hallucinations. Hallucinations (false information) generated by LLMs arise from a multitude of causes, including both factors related to the training dataset as well as their auto-regressive nature. The implications for clinical practice range from the generation of inaccurate diagnostic and therapeutic information to the reinforcement of flawed diagnostic reasoning pathways, as well as a lack of reliability if not used properly. To reduce this risk, we developed a general technical framework for approaching LLMs in general clinical practice, as well as for implementation on a larger institutional scale.

摘要

大语言模型(LLMs)是人工智能工具,有望深刻改变我们从事医学各方面工作的方式。鉴于大语言模型在医学领域的巨大潜力以及众多医疗保健利益相关者将其应用于日常实践的兴趣,临床医生了解与使用这些模型相关的基本风险至关重要。具体而言,使用大语言模型的一个重大风险是它们产生幻觉的可能性。大语言模型产生的幻觉(虚假信息)源于多种原因,包括与训练数据集相关的因素以及它们的自回归性质。对临床实践的影响范围从产生不准确的诊断和治疗信息到强化有缺陷的诊断推理途径,以及如果使用不当则缺乏可靠性。为降低这种风险,我们开发了一个通用技术框架,用于在一般临床实践中应用大语言模型,以及在更大的机构规模上实施。

相似文献

2
Utilizing large language models for gastroenterology research: a conceptual framework.利用大语言模型进行胃肠病学研究:一个概念框架。
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.

引用本文的文献

1
AI Agents in Clinical Medicine: A Systematic Review.临床医学中的人工智能代理:一项系统综述。
medRxiv. 2025 Aug 26:2025.08.22.25334232. doi: 10.1101/2025.08.22.25334232.
3
Artificial Intelligence Large Language Models in Cardiology.心脏病学中的人工智能大语言模型
Rev Cardiovasc Med. 2025 Jul 8;26(7):39452. doi: 10.31083/RCM39452. eCollection 2025 Jul.

本文引用的文献

1
A survey on multimodal large language models.关于多模态大语言模型的一项调查。
Natl Sci Rev. 2024 Nov 12;11(12):nwae403. doi: 10.1093/nsr/nwae403. eCollection 2024 Dec.
2
Detecting hallucinations in large language models using semantic entropy.使用语义熵检测大型语言模型中的幻觉。
Nature. 2024 Jun;630(8017):625-630. doi: 10.1038/s41586-024-07421-0. Epub 2024 Jun 19.
6
ChatGPT in head and neck scientific writing: A precautionary anecdote.ChatGPT在头颈科学写作中的应用:一则警示轶事。
Am J Otolaryngol. 2023 Nov-Dec;44(6):103980. doi: 10.1016/j.amjoto.2023.103980. Epub 2023 Jul 6.
9
Ethics of large language models in medicine and medical research.医学及医学研究中大型语言模型的伦理问题。
Lancet Digit Health. 2023 Jun;5(6):e333-e335. doi: 10.1016/S2589-7500(23)00083-3. Epub 2023 Apr 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验