Bédard Sandrine, Karthik Enamundram Naga, Tsagkas Charidimos, Pravatà Emanuele, Granziera Cristina, Smith Andrew, Weber Ii Kenneth Arnold, Cohen-Adad Julien
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada.
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada; Mila - Québec Artificial Intelligence Institute, Montréal, Québec, Canada.
Med Image Anal. 2025 Apr;101:103473. doi: 10.1016/j.media.2025.103473. Epub 2025 Jan 21.
Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord that are stable across MRI contrasts. Using the Spine Generic Public Database of healthy participants (n=267; contrasts=6), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with aggressive data augmentation and a regression-based loss function, were then used to train a U-Net model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different GT mask types, loss functions, contrast-specific models and domain generalization methods. Our results show that using the soft average segmentations along with a regression loss function reduces CSA variability (p<0.05, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art contrast-specific methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects. Our model is integrated into the Spinal Cord Toolbox (v6.2 and higher).
脊髓分割具有临床相关性,尤其用于计算脊髓横截面积(CSA),以诊断和监测脊髓压迫或神经退行性疾病,如多发性硬化症。虽然存在几种半自动方法,但一个关键限制仍然存在:分割取决于MRI对比度,导致不同对比度下的CSA不同。这部分是由于脊髓与脑脊液之间边界的外观变化,这取决于序列和采集参数。这种对对比度敏感的CSA在多中心研究中增加了变异性,因为研究方案可能不同,从而降低了检测细微萎缩的敏感性。此外,现有方法通过为每个对比度训练一个模型来增强CSA变异性,同时还产生不考虑部分容积效应的二进制掩码。在这项工作中,我们提出了一种基于深度学习的方法,该方法可以生成在MRI对比度之间稳定的脊髓软分割。我们首先使用健康参与者的脊柱通用公共数据库(n = 267;对比度 = 6),通过对所有6种对比度的二进制分割进行平均,生成个体层面的软地面真值(GT)。然后,这些软GT,连同激进的数据增强和基于回归的损失函数,被用于训练用于脊髓分割的U-Net模型。我们将我们的模型与现有最佳方法进行了评估,并进行了涉及不同GT掩码类型、损失函数、特定对比度模型和域泛化方法的消融研究。我们的结果表明,使用软平均分割以及回归损失函数可降低CSA变异性(p < 0.05,Wilcoxon符号秩检验)。所提出的脊髓分割模型在未见数据集、供应商、对比度和病理情况(压迫、病变)中比现有最佳的特定对比度方法具有更好的泛化能力,同时考虑了部分容积效应。我们的模型已集成到脊髓工具箱(v6.2及更高版本)中。