Naga Karthik Enamundram, Valošek Jan, Smith Andrew C, Pfyffer Dario, Schading-Sassenhausen Simon, Farner Lynn, Weber Kenneth A, Freund Patrick, Cohen-Adad Julien
From the NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4 (E.N.K., J.V., J.C.A.); Mila-Quebec AI Institute, Montréal, Québec, Canada (E.N.K., J.V., J.C.A.); Department of Neurosurgery and Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia (J.V.); Department of Physical Medicine and Rehabilitation Physical Therapy Program, University of Colorado School of Medicine, Aurora, Colo (A.C.S.); Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland (D.P., S.S.S., L.F., P.F.); Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, Calif (D.P., K.A.W.); Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (P.F.); and Functional Neuroimaging Unit, CRIUGM and Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada (J.C.A.).
Radiol Artif Intell. 2025 Jan;7(1):e240005. doi: 10.1148/ryai.240005.
Purpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023. The data consisted of T2-weighted MRI scans acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal). Patients had different lesion etiologies (traumatic, ischemic, and hemorrhagic) and lesion locations across the cervical, thoracic, and lumbar spine. A deep learning model, SCIseg (which is open source and accessible through the Spinal Cord Toolbox, version 6.2 and above), was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The segmentations from the proposed model were visually and quantitatively compared with those from three other open-source methods (PropSeg, DeepSeg, and contrast-agnostic, all part of the Spinal Cord Toolbox). The Wilcoxon signed rank test was used to compare quantitative MRI biomarkers of SCI (lesion volume, lesion length, and maximal axial damage ratio) derived from the manual reference standard lesion masks and biomarkers obtained automatically with SCIseg segmentations. Results The study included 191 patients with SCI (mean age, 48.1 years ± 17.9 [SD]; 142 [74%] male patients). SCIseg achieved a mean Dice score of 0.92 ± 0.07 and 0.61 ± 0.27 for spinal cord and SCI lesion segmentation, respectively. There was no evidence of a difference between lesion length ( = .42) and maximal axial damage ratio ( = .16) computed from manually annotated lesions and the lesion segmentations obtained using SCIseg. Conclusion SCIseg accurately segmented intramedullary lesions on a diverse dataset of T2-weighted MRI scans and automatically extracted clinically relevant lesion characteristics. Spinal Cord, Trauma, Segmentation, MR Imaging, Supervised Learning, Convolutional Neural Network (CNN) Published under a CC BY 4.0 license.
开发一种深度学习工具,用于在T2加权磁共振成像(MRI)扫描中自动分割脊髓损伤(SCI)患者的脊髓和髓内病变。材料与方法:这项回顾性研究纳入了2002年7月至2023年2月期间采集的MRI数据。数据包括使用不同扫描仪制造商、具有不同图像分辨率(各向同性和各向异性)和方向(轴向和矢状面)采集的T2加权MRI扫描。患者有不同的病变病因(创伤性、缺血性和出血性),病变位于颈椎、胸椎和腰椎的不同部位。一种深度学习模型SCIseg(该模型是开源的,可通过脊髓工具箱6.2及以上版本获取),在一个分三个阶段的过程中进行训练,该过程涉及主动学习,用于自动分割髓内SCI病变和脊髓。将所提出模型的分割结果与其他三种开源方法(PropSeg、DeepSeg和对比无关法,均为脊髓工具箱的一部分)的分割结果进行视觉和定量比较。采用Wilcoxon符号秩检验比较从手动参考标准病变掩码得出的SCI定量MRI生物标志物(病变体积、病变长度和最大轴向损伤率)与通过SCIseg分割自动获得的生物标志物。结果:该研究纳入了191例SCI患者(平均年龄48.1岁±17.9[标准差];142例[74%]为男性患者)。SCIseg在脊髓和SCI病变分割方面的平均Dice分数分别为0.92±0.07和0.61±0.27。从手动标注的病变计算得出的病变长度(P = 0.42)和最大轴向损伤率(P = 0.16)与使用SCIseg获得的病变分割结果之间没有差异。结论:SCIseg在T2加权MRI扫描的多样化数据集中准确分割了髓内病变,并自动提取了临床相关的病变特征。脊髓、创伤、分割、磁共振成像、监督学习卷积神经网络(CNN)根据知识共享署名4.0许可发布。