Suppr超能文献

Identifying autism spectrum disorder based on machine learning for multi-site fMRI.

作者信息

Kang Li, Chen Mubin, Huang Jianjun, Xu Jinyang

机构信息

College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China; the Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China.

出版信息

J Neurosci Methods. 2025 Apr;416:110379. doi: 10.1016/j.jneumeth.2025.110379. Epub 2025 Jan 26.

Abstract

BACKGROUND

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive stereotypical behavior and social impairment. Early diagnosis is essential for developing a treatment plan for autism. Although multi-site data can expand the dataset to facilitate the process of data analysis, data heterogeneity between sites and the large amount of data make data analysis difficult.

METHOD

To address these issues, this paper proposes a multi-site autism identification method based on machine learning technique. Firstly, the fMRI data from all sites are converted into a glass brain dataset and their features are extracted with LeNet5. Then, the extracted glass brain features are used to construct a partial correlation matrix at subject-level and the multi-site dataset are constructed by feature selection, which is finally classified using MLP. In order to alleviate the heterogeneity of the data and improve the accuracy of data classification, a new dataset partitioning method, Split-Merge-Split (SMS), is proposed in this paper to reduce the variability between the features extracted by the model in the training and test sets.

RESULTS

Extensive quantitative and qualitative evaluations demonstrate the proposed method enhanced the recognition accuracy on both single-site and multi-site dataset, which shows the effectiveness of this method. Specifically, in single-site classification, our method achieved its highest accuracy at the OHSU site, reaching an accuracy of 93 %. In multi-site classification, our method attained an accuracy of 83.5 %.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验