Suppr超能文献

α-突触核蛋白纤维化的分子见解:拉曼光谱与机器学习方法

Molecular Insights into α-Synuclein Fibrillation: A Raman Spectroscopy and Machine Learning Approach.

作者信息

Coles Nathan P, Elsheikh Suzan, Quesnel Agathe, Butler Lucy, Jennings Claire, Tarzi Chaimaa, Achadu Ojodomo J, Islam Meez, Kalesh Karunakaran, Occhipinti Annalisa, Angione Claudio, Marles-Wright Jon, Koss David J, Thomas Alan J, Outeiro Tiago F, Filippou Panagiota S, Khundakar Ahmad A

机构信息

School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom.

National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom.

出版信息

ACS Chem Neurosci. 2025 Feb 19;16(4):687-698. doi: 10.1021/acschemneuro.4c00726. Epub 2025 Jan 28.

Abstract

The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein. Monomeric α-synuclein was produced, purified, and subjected to a 7-day fibrillation assay to generate preformed fibrils. Stages of α-synuclein fibrillation were analyzed using Raman spectroscopy, with aggregation confirmed through negative staining transmission electron microscopy, mass spectrometry, and light scattering analyses. A machine learning pipeline incorporating principal component analysis and uniform manifold approximation and projection was used to analyze the Raman spectral data and identify significant peaks, resulting in differentiation between sample groups. Notable spectral shifts in α-synuclein were found in various stages of aggregation. Early changes (D1) included increases in α-helical structures (1303, 1330 cm) and β-sheet formation (1045 cm), with reductions in COO and CH bond regions (1406, 1445 cm). By D4, these structural shifts persist with additional β-sheet features. At D7, a decrease in β-sheet H-bonding (1625 cm) and tyrosine ring breathing (830 cm) indicates further structural stabilization, suggesting a shift from initial helical structures to stabilized β-sheets and aggregated fibrils. Additionally, alterations in peaks related to tyrosine, alanine, proline, and glutamic acid were identified, emphasizing the role of these amino acids in intramolecular interactions during the transition from α-helical to β-sheet conformational states in α-synuclein fibrillation. This approach offers insight into α-synuclein aggregation, enhancing the understanding of its role in Lewy body disease pathophysiology and potential diagnostic relevance.

摘要

α-突触核蛋白的聚集对于路易体病的发展至关重要,包括帕金森病和路易体痴呆。α-突触核蛋白的聚集途径通常涉及成核、延伸和二次成核的特定序列,呈现出朊病毒样传播。本研究采用拉曼光谱和机器学习分析以及补充技术,来表征纯化的重组野生型α-突触核蛋白原纤维形成过程中的生物分子变化。制备、纯化单体α-突触核蛋白,并进行为期7天的原纤维形成试验以生成预形成的原纤维。使用拉曼光谱分析α-突触核蛋白原纤维形成的阶段,通过负染色透射电子显微镜、质谱和光散射分析确认聚集情况。使用包含主成分分析和均匀流形近似与投影的机器学习管道来分析拉曼光谱数据并识别显著峰,从而区分样本组。在α-突触核蛋白聚集的各个阶段发现了显著的光谱位移。早期变化(D1)包括α-螺旋结构(1303、1330厘米)增加和β-折叠形成(1045厘米),同时羧基和碳氢键区域(1406、1445厘米)减少。到D4时,这些结构变化持续存在并伴有额外的β-折叠特征。在D7时,β-折叠氢键(1625厘米)和酪氨酸环呼吸(830厘米)减少表明结构进一步稳定,这表明从最初的螺旋结构转变为稳定的β-折叠和聚集的原纤维。此外,还确定了与酪氨酸、丙氨酸、脯氨酸和谷氨酸相关的峰的变化,强调了这些氨基酸在α-突触核蛋白原纤维形成过程中从α-螺旋构象状态转变为β-折叠构象状态时分子内相互作用中的作用。这种方法为α-突触核蛋白聚集提供了深入了解,增强了对其在路易体病病理生理学中的作用以及潜在诊断相关性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/106c/11843597/75e7debc6da0/cn4c00726_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验