Suppr超能文献

拉曼光谱揭示的α-突触核蛋白淀粉样纤维的结构特征。

Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.

机构信息

From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.

From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892

出版信息

J Biol Chem. 2018 Jan 19;293(3):767-776. doi: 10.1074/jbc.M117.812388. Epub 2017 Nov 30.

Abstract

Parkinson's disease (PD) is associated with the formation of α-synuclein amyloid fibrils. Elucidating the role of these β-sheet-rich fibrils in disease progression is crucial; however, collecting detailed structural information on amyloids is inherently difficult because of their insoluble, non-crystalline, and polymorphic nature. Here, we show that Raman spectroscopy is a facile technique for characterizing structural features of α-synuclein fibrils. Combining Raman spectroscopy with aggregation kinetics and transmission electron microscopy, we examined the effects of pH and ionic strength as well as four PD-related mutations (A30P, E46K, G51D, and A53T) on α-synuclein fibrils. Raman spectral differences were observed in the amide-I, amide-III, and fingerprint regions, indicating that secondary structure and tertiary contacts are influenced by pH and to a lesser extent by NaCl. Faster aggregation times appear to facilitate unique fibril structure as determined by the highly reproducible amide-I band widths, linking aggregation propensity and fibril polymorphism. Importantly, Raman spectroscopy revealed molecular-level perturbations of fibril conformation by the PD-related mutations that are not apparent through transmission electron microscopy or limited proteolysis. The amide-III band was found to be particularly sensitive, with G51D exhibiting the most distinctive features, followed by A53T and E46K. Relating to a cellular environment, our data would suggest that fibril polymorphs can be formed in different cellular compartments and potentially result in distinct phenotypes. Our work sets a foundation toward future cellular Raman studies of amyloids.

摘要

帕金森病(PD)与α-突触核蛋白淀粉样纤维的形成有关。阐明这些富含β-折叠的纤维在疾病进展中的作用至关重要;然而,由于其不溶性、非晶态和多态性,收集有关淀粉样蛋白的详细结构信息具有内在的困难。在这里,我们表明拉曼光谱是一种用于表征α-突触核蛋白纤维结构特征的简便技术。我们结合拉曼光谱、聚集动力学和透射电子显微镜,研究了 pH 值和离子强度以及四种 PD 相关突变(A30P、E46K、G51D 和 A53T)对α-突触核蛋白纤维的影响。在酰胺-I、酰胺-III 和指纹区域观察到拉曼光谱差异,表明二级结构和三级接触受 pH 值影响,受 NaCl 影响较小。更快的聚集时间似乎促进了独特的纤维结构,这可以通过高度可重复的酰胺-I 带宽来确定,将聚集倾向与纤维多态性联系起来。重要的是,拉曼光谱揭示了 PD 相关突变对纤维构象的分子水平扰动,这在透射电子显微镜或有限蛋白酶解中并不明显。发现酰胺-III 带特别敏感,G51D 表现出最独特的特征,其次是 A53T 和 E46K。与细胞环境有关,我们的数据表明,纤维多态体可以在不同的细胞隔室中形成,并可能导致不同的表型。我们的工作为未来对细胞内淀粉样蛋白的拉曼研究奠定了基础。

相似文献

1
Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.
J Biol Chem. 2018 Jan 19;293(3):767-776. doi: 10.1074/jbc.M117.812388. Epub 2017 Nov 30.
2
Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy.
Cell Res. 2018 Sep;28(9):897-903. doi: 10.1038/s41422-018-0075-x. Epub 2018 Jul 31.
4
A sensitive assay reveals structural requirements for α-synuclein fibril growth.
J Biol Chem. 2017 Jun 2;292(22):9034-9050. doi: 10.1074/jbc.M116.767053. Epub 2017 Apr 3.
7
Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs.
Nat Struct Mol Biol. 2019 Nov;26(11):1044-1052. doi: 10.1038/s41594-019-0322-y. Epub 2019 Nov 6.
9
Alpha-synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson's disease.
Commun Biol. 2019 Oct 11;2:374. doi: 10.1038/s42003-019-0598-9. eCollection 2019.

引用本文的文献

1
Amyloid formation of alternatively spliced variants of α-synuclein.
Protein Sci. 2025 Jul;34(7):e70195. doi: 10.1002/pro.70195.
2
Low-frequency Raman spectra of amyloid fibrils.
J Chem Phys. 2025 Jun 7;162(21). doi: 10.1063/5.0260500.
4
Alpha-synuclein aggregation induces prominent cellular lipid changes as revealed by Raman spectroscopy and machine learning analysis.
Brain Commun. 2025 Apr 3;7(2):fcaf133. doi: 10.1093/braincomms/fcaf133. eCollection 2025.
5
Molecular Insights into α-Synuclein Fibrillation: A Raman Spectroscopy and Machine Learning Approach.
ACS Chem Neurosci. 2025 Feb 19;16(4):687-698. doi: 10.1021/acschemneuro.4c00726. Epub 2025 Jan 28.
6
Structural characterization of amyloid aggregates with spatially resolved infrared spectroscopy.
Methods Enzymol. 2024;697:113-150. doi: 10.1016/bs.mie.2024.02.013. Epub 2024 Apr 5.
7
Raman spectroscopy in the study of amyloid formation and phase separation.
Biochem Soc Trans. 2024 Jun 26;52(3):1121-1130. doi: 10.1042/BST20230599.
9
Hyperspectral Raman Imaging for Automated Recognition of Human Renal Amyloid.
J Histochem Cytochem. 2023 Nov;71(11):643-652. doi: 10.1369/00221554231206858. Epub 2023 Oct 13.
10
Water bend-libration as a cellular Raman imaging probe of hydration.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2313133120. doi: 10.1073/pnas.2313133120. Epub 2023 Oct 9.

本文引用的文献

1
Perturbation in Long-Range Contacts Modulates the Kinetics of Amyloid Formation in α-Synuclein Familial Mutants.
ACS Chem Neurosci. 2017 Oct 18;8(10):2235-2246. doi: 10.1021/acschemneuro.7b00149. Epub 2017 Aug 14.
2
Taking a Bite Out of Amyloid: Mechanistic Insights into α-Synuclein Degradation by Cathepsin L.
Biochemistry. 2017 Aug 1;56(30):3881-3884. doi: 10.1021/acs.biochem.7b00360. Epub 2017 Jun 28.
3
Tracking the amyloidogenic core of IAPP amyloid fibrils: Insights from micro-Raman spectroscopy.
J Struct Biol. 2017 Aug;199(2):140-152. doi: 10.1016/j.jsb.2017.06.002. Epub 2017 Jun 14.
4
Structural and functional properties of prefibrillar α-synuclein oligomers.
Sci Rep. 2016 Apr 14;6:24526. doi: 10.1038/srep24526.
5
Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein.
Nat Struct Mol Biol. 2016 May;23(5):409-15. doi: 10.1038/nsmb.3194. Epub 2016 Mar 28.
6
α-Synuclein Amyloid Fibrils with Two Entwined, Asymmetrically Associated Protofibrils.
J Biol Chem. 2016 Jan 29;291(5):2310-8. doi: 10.1074/jbc.M115.698787. Epub 2015 Dec 7.
7
Structure of the toxic core of α-synuclein from invisible crystals.
Nature. 2015 Sep 24;525(7570):486-90. doi: 10.1038/nature15368. Epub 2015 Sep 9.
8
Phenotypic spectrum of alpha-synuclein mutations: New insights from patients and cellular models.
Parkinsonism Relat Disord. 2016 Jan;22 Suppl 1:S16-20. doi: 10.1016/j.parkreldis.2015.08.015. Epub 2015 Aug 18.
9
Cysteine cathepsins are essential in lysosomal degradation of α-synuclein.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9322-7. doi: 10.1073/pnas.1500937112. Epub 2015 Jul 13.
10
α-Synuclein strains cause distinct synucleinopathies after local and systemic administration.
Nature. 2015 Jun 18;522(7556):340-4. doi: 10.1038/nature14547. Epub 2015 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验