Suppr超能文献

利用人工参与的人工智能和YOLO基础模型对香蕉枯萎病进行地理参考多平台监测的数字框架。

Digital framework for georeferenced multiplatform surveillance of banana wilt using human in the loop AI and YOLO foundation models.

作者信息

Mora Juan Jose, Blomme Guy, Safari Nancy, Elayabalan Sivalingam, Selvarajan Ramasamy, Selvaraj Michael Gomez

机构信息

Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, Colombia.

Bioversity International, c/o ILRI, P.O. Box 5689, Addis Ababa, Ethiopia.

出版信息

Sci Rep. 2025 Jan 28;15(1):3491. doi: 10.1038/s41598-025-87588-2.

Abstract

Bananas (Musa spp.) are a critical global food crop, providing a primary source of nutrition for millions of people. Traditional methods for disease monitoring and detection are often time-consuming, labor-intensive, and prone to inaccuracies. This study introduces an AI-powered multiplatform georeferenced surveillance system designed to enhance the detection and management of banana wilt diseases. We developed and evaluated several deep learning foundation models, including YOLO-NAS, YOLOv8, YOLOv9, and Faster-RCNN to perform accurate disease detection on both platforms. Our results demonstrate the superior performance of YOLOv9 in detecting healthy, Fusarium Wilt and Xanthomonas Wilt diseased plants in aerial images, achieving high mAP@50, precision and recall metrics ranging from 55 to 86%. In terms of ground level images, we organized the dataset based on disease occurrence in Africa, Latin America, India, Asia and Australia. For this platform, YOLOv8 outperforms the rest and achieves mAP@50, precision and recall between 65 and 99% depending on the plant part and region. Additionally, we incorporated Explainable AI techniques, such as Gradient-weighted Class Activation Mapping, to enhance model transparency and trustworthiness. Human in the Loop Artificial Intelligence was also utilized to enhance the ground level model's predictions.

摘要

香蕉(芭蕉属)是一种至关重要的全球粮食作物,为数百万人提供主要营养来源。传统的疾病监测和检测方法通常耗时、 labor-intensive且容易出现不准确的情况。本研究引入了一种由人工智能驱动的多平台地理参考监测系统,旨在加强香蕉枯萎病的检测和管理。我们开发并评估了几种深度学习基础模型,包括YOLO-NAS、YOLOv8、YOLOv9和Faster-RCNN,以便在两个平台上进行准确的疾病检测。我们的结果表明,YOLOv9在检测航空图像中的健康、枯萎病和黄单胞菌枯萎病植株方面表现优异,实现了高mAP@50,精度和召回率指标在55%至86%之间。在地面图像方面,我们根据非洲、拉丁美洲、印度、亚洲和澳大利亚的疾病发生情况组织了数据集。对于这个平台,YOLOv8的表现优于其他模型,根据植物部位和地区的不同,mAP@50、精度和召回率在65%至99%之间。此外,我们还纳入了可解释人工智能技术,如梯度加权类激活映射,以提高模型的透明度和可信度。还利用了人工参与的人工智能来增强地面模型的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4890/11775237/41e23af28081/41598_2025_87588_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验