Antonijevic Milos, Zivkovic Miodrag, Djuric Jovicic Milica, Nikolic Bosko, Perisic Jasmina, Milovanovic Marina, Jovanovic Luka, Abdel-Salam Mahmoud, Bacanin Nebojsa
Singidunum University, 11000, Belgrade, Serbia.
Innovation Centre, School of Electrical Engineering, University of Belgrade, 11000, Belgrade, Serbia.
Sci Rep. 2025 Jan 28;15(1):3555. doi: 10.1038/s41598-025-88135-9.
Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture's efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model's decision-making process, supporting future data collection efforts and enhancing security of these systems.
物联网(IoT)是支持元宇宙集成过程的最重要的新兴技术之一,它能够实现物理域和虚拟域之间的顺畅数据传输。将传感器设备、可穿戴设备和智能小工具集成到元宇宙环境中,使物联网能够深化交互并增强沉浸感,这对于完全集成的数据驱动型元宇宙至关重要。然而,由于物联网设备通常硬件配置较低且连接到互联网,它们极易受到不同类型的网络攻击,这给维护安全的基础设施带来了重大的安全问题。传统的安全技术难以应对这些不断演变的威胁,凸显了对由人工智能(AI)驱动的自适应解决方案的需求。这项工作旨在提高集成到元宇宙中的物联网边缘设备的信任度和安全性。本研究围绕一个混合框架展开,该框架结合了卷积神经网络(CNN)和机器学习(ML)分类模型,如分类提升(CatBoost)和轻量级梯度提升机(LightGBM),并通过元启发式优化器进一步优化以提升性能。设计了一个两级架构来管理复杂的数据,能够检测和分类物联网网络中的攻击。利用一个真实世界的物联网网络攻击数据集进行的全面分析验证了所提出的架构在识别恶意攻击的特定变体方面的有效性,这是一个典型的多类分类挑战。利用公开数据进行了三个实验,其中顶级模型在多类分类中达到了99.83%的最高准确率。此外,可解释人工智能方法为模型的决策过程提供了有价值的补充见解,支持未来的数据收集工作并增强这些系统的安全性。