Suppr超能文献

自适应差异化鹦鹉优化算法:一种用于风电功率预测应用的全局优化多策略增强算法

Adaptive Differentiated Parrot Optimization: A Multi-Strategy Enhanced Algorithm for Global Optimization with Wind Power Forecasting Applications.

作者信息

Lin Guanjun, Abdel-Salam Mahmoud, Hu Gang, Jia Heming

机构信息

School of Information Engineering, Sanming University, Sanming 365004, China.

Faculty of Computers and Information Science, Mansoura University, Mansoura 35516, Egypt.

出版信息

Biomimetics (Basel). 2025 Aug 18;10(8):542. doi: 10.3390/biomimetics10080542.

Abstract

The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative progression, the algorithm encounters significant obstacles in preserving population diversity and experiences declining search effectiveness, resulting in early convergence and diminished capacity to identify optimal solutions within intricate optimization landscapes. To overcome these constraints, this work presents the Adaptive Differentiated Parrot Optimization Algorithm (ADPO), which constitutes a substantial enhancement over baseline PO through the implementation of three innovative mechanisms: Mean Differential Variation (MDV), Dimension Learning-Based Hunting (DLH), and Enhanced Adaptive Mutualism (EAM). The MDV mechanism strengthens the exploration capabilities by implementing dual-phase mutation strategies that facilitate extensive search during initial iterations while promoting intensive exploitation near promising solutions during later phases. Additionally, the DLH mechanism prevents premature convergence by enabling dimension-wise adaptive learning from spatial neighbors, expanding search diversity while maintaining coordinated optimization behavior. Finally, the EAM mechanism replaces rigid cooperation with fitness-guided interactions using flexible reference solutions, ensuring optimal balance between intensification and diversification throughout the optimization process. Collectively, these mechanisms significantly improve the algorithm's exploration, exploitation, and convergence capabilities. Furthermore, ADPO's effectiveness was comprehensively assessed using benchmark functions from the CEC2017 and CEC2022 suites, comparing performance against 12 advanced algorithms. The results demonstrate ADPO's exceptional convergence speed, search efficiency, and solution precision. Additionally, ADPO was applied to wind power forecasting through integration with Long Short-Term Memory (LSTM) networks, achieving remarkable improvements over conventional approaches in real-world renewable energy prediction scenarios. Specifically, ADPO outperformed competing algorithms across multiple evaluation metrics, achieving average R values of 0.9726 in testing phases with exceptional prediction stability. Moreover, ADPO obtained superior Friedman rankings across all comparative evaluations, with values ranging from 1.42 to 2.78, demonstrating clear superiority over classical, contemporary, and recent algorithms. These outcomes validate the proposed enhancements and establish ADPO's robustness and effectiveness in addressing complex optimization challenges.

摘要

鹦鹉优化算法(PO)是一种当代受自然启发的元启发式技术,它通过观察米氏锥尾鹦鹉的行为模式而制定。PO通过模仿觅食行为和社会互动,在探索和利用阶段之间实现平衡,从而展现出有效的优化能力。然而,在迭代过程中,该算法在保持种群多样性方面遇到重大障碍,搜索有效性下降,导致过早收敛,并且在复杂的优化环境中识别最优解的能力减弱。为了克服这些限制,本文提出了自适应差分鹦鹉优化算法(ADPO),通过实施三种创新机制:均值差分变异(MDV)、基于维度学习的搜索(DLH)和增强自适应共生(EAM),对基线PO进行了实质性改进。MDV机制通过实施双阶段变异策略增强探索能力,在初始迭代期间促进广泛搜索,而在后期阶段促进在有希望的解附近进行密集利用。此外,DLH机制通过实现从空间邻居进行维度自适应学习来防止过早收敛,在保持协调优化行为的同时扩展搜索多样性。最后,EAM机制使用灵活的参考解将刚性合作替换为适应度引导的交互,在整个优化过程中确保强化和多样化之间的最佳平衡。总体而言,这些机制显著提高了算法的探索、利用和收敛能力。此外,使用CEC2017和CEC2022套件中的基准函数对ADPO的有效性进行了全面评估,将其性能与12种先进算法进行了比较。结果表明ADPO具有卓越的收敛速度、搜索效率和求解精度。此外,ADPO通过与长短期记忆(LSTM)网络集成应用于风电预测,在实际可再生能源预测场景中比传统方法有显著改进。具体而言,ADPO在多个评估指标上优于竞争算法,在测试阶段平均R值达到0.9726,具有出色的预测稳定性。此外,ADPO在所有比较评估中获得了优异的弗里德曼排名,值范围为从从1.42到2.78,显示出相对于经典、当代和最新算法的明显优势。这些结果验证了所提出的改进,并确立了ADPO在解决复杂优化挑战方面的稳健性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12384034/2c18b0130e2f/biomimetics-10-00542-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验