Yin Ping, Zhang Xinyu, Liu Ying, Chen Weidao, Wang Yudong, Lu Lin, Liu Xia, Hong Nan
Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, 100044, P. R. China.
Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China.
J Imaging Inform Med. 2025 Jan 28. doi: 10.1007/s10278-025-01424-7.
This study aims to develop an end-to-end deep learning (DL) model to predict neoadjuvant chemotherapy (NACT) response in osteosarcoma (OS) patients using routine magnetic resonance imaging (MRI). We retrospectively analyzed data from 112 patients with histologically confirmed OS who underwent NACT prior to surgery. Multi-sequence MRI data (including T2-weighted and contrast-enhanced T1-weighted images) and physician annotations were utilized to construct an end-to-end DL model. The model integrates ResUNet for automatic tumor segmentation and 3D-ResNet-18 for predicting NACT efficacy. Model performance was assessed using area under the curve (AUC) and accuracy (ACC). Among the 112 patients, 51 exhibited a good NACT response, while 61 showed a poor response. No statistically significant differences were found in age, sex, alkaline phosphatase levels, tumor size, or location between these groups (P > 0.05). The ResUNet model achieved robust performance, with an average Dice coefficient of 0.579 and average Intersection over Union (IoU) of 0.463. The T2-weighted 3D-ResNet-18 classification model demonstrated superior performance in the test set with an AUC of 0.902 (95% CI: 0.766-1), ACC of 0.783, sensitivity of 0.909, specificity of 0.667, and F1 score of 0.800. Our proposed end-to-end DL model can effectively predict NACT response in OS patients using routine MRI, offering a potential tool for clinical decision-making.
本研究旨在开发一种端到端深度学习(DL)模型,以使用常规磁共振成像(MRI)预测骨肉瘤(OS)患者的新辅助化疗(NACT)反应。我们回顾性分析了112例经组织学确诊为OS且在手术前接受NACT的患者的数据。利用多序列MRI数据(包括T2加权和对比增强T1加权图像)和医生标注构建端到端DL模型。该模型整合了用于自动肿瘤分割的ResUNet和用于预测NACT疗效的3D-ResNet-18。使用曲线下面积(AUC)和准确率(ACC)评估模型性能。在这112例患者中,51例表现出良好的NACT反应,而61例表现出较差的反应。这些组之间在年龄、性别、碱性磷酸酶水平、肿瘤大小或位置方面未发现统计学显著差异(P>0.05)。ResUNet模型表现稳健,平均Dice系数为0.579,平均交并比(IoU)为0.463。T2加权3D-ResNet-18分类模型在测试集中表现优异,AUC为0.902(95%CI:0.766-1),ACC为0.783,敏感性为0.909,特异性为0.667,F1分数为0.800。我们提出的端到端DL模型可以使用常规MRI有效预测OS患者的NACT反应,并为临床决策提供潜在工具。