Plewka Julia, Alibrandi Armando, Bornemann Till L V, Esser Sarah P, Stach Tom L, Sures Katharina, Becker Jannis, Moraru Cristina, Soares André, di Primio Rolando, Kallmeyer Jens, Probst Alexander J
Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, United States of America.
Microlife. 2025 Jan 23;6:uqae027. doi: 10.1093/femsml/uqae027. eCollection 2025.
Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons. We identified microorganisms and their pathways for the degradation of methane, -alkanes, mono-aromatic, and polycyclic aromatic compounds in a metagenome retrieved from biodegraded petroleum encountered in a subsurface reservoir in the Barents Sea. Capitalizing on marker genes from metagenomes and public data mining, we compared the prokaryotes, putative viruses, and putative plasmids of the sampled site to those from 10 other hydrocarbon-associated sites, revealing a shared network of species and genetic elements across the globe. To test for the potential dispersal of the microbes and predicted elements via seawater, we compared our findings to the Tara Ocean dataset, resulting in a broad distribution of prokaryotic and viral signatures. Although frequently shared between hydrocarbon-associated sites, putative plasmids, however, showed little coverage in the Tara Oceans dataset, suggesting an undiscovered mode of transfer between hydrocarbon-affected ecosystems. Based on our analyses, genetic information is globally shared between oil reservoirs and hydrocarbon-associated sites, and we propose that currents and other physical occurrences within the ocean along with deep aquifers are major distributors of prokaryotes and viruses into these subsurface ecosystems.
油藏是社会碳氢化合物的主要来源。尽管过去已经对工业开采油藏中的微生物群落进行了研究,但未开发油藏中的原始微生物群落以及各自遗传特征的分布模式却鲜有探索。在这里,我们表明一个原始油样包含一个由细菌和真菌组成的复杂群落,用于烃类降解。我们在从巴伦支海一个地下油藏中遇到的生物降解石油中提取的宏基因组中,鉴定了微生物及其降解甲烷、正构烷烃、单环芳烃和多环芳烃的途径。利用宏基因组中的标记基因和公共数据挖掘,我们将采样点的原核生物、假定病毒和假定质粒与其他10个与碳氢化合物相关的位点进行了比较,揭示了全球范围内物种和遗传元件的共享网络。为了测试微生物和预测元件通过海水的潜在扩散情况,我们将我们的发现与塔拉海洋数据集进行了比较,结果显示原核生物和病毒特征分布广泛。然而,尽管假定质粒在与碳氢化合物相关的位点之间经常共享,但在塔拉海洋数据集中的覆盖范围很小,这表明在受碳氢化合物影响的生态系统之间存在未被发现的转移模式。基于我们的分析,遗传信息在油藏和与碳氢化合物相关的位点之间全球共享,并且我们提出海洋中的洋流和其他物理现象以及深层含水层是原核生物和病毒进入这些地下生态系统的主要传播者。