Gholami Ramezanali, Khoogar Ahmad R, Allaei Mohammad Hossein
Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 1774-15875, Tehran, Iran.
Heliyon. 2024 Dec 31;11(2):e41576. doi: 10.1016/j.heliyon.2024.e41576. eCollection 2025 Jan 30.
The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.1 to 0.5 wt%), oxidation degree (from 3 to 9 g), and homogenization time (from 90 to 150 min). To do so, nine epoxy/GO composites were synthesis based on Taguchi method of experiment design ( (33) orthogonal array) followed by conducting tensile strength tests. Using Taguchi method, optimal values of 0.25 wt%, 6 g, and 150 min were determined for GO content, oxidation degree, and homogenization time, respectively. Compared to tensile strength of the pure epoxy (about 38 MPa), the superior tensile strength of 73 MPa obtained for the optimal composite showcased an impressive 92 % improvement. Additionally, analysis of variance indicated the predominant role of GO's content than other parameters in improving the epoxy/GO composite's tensile strength. Finally, non-linear regression analysis was applied to develop a semi-empirical quadratic model for predicting the composite's tensile strength. The R value of 99.55 % as well as a negligible AARD of 1.13 % in the optimal condition, implied the highest accuracy of developed model inside the design space.
环氧-氧化石墨烯(GO)纳米复合材料在改善传统环氧树脂机械性能方面的潜力正使其备受瞩目。这使其适用于先进工程应用,包括结构材料、汽车和航空航天领域。本研究旨在通过合成具有不同GO含量(从0.1至0.5 wt%)、氧化程度(从3至9 g)和均质化时间(从90至150分钟)的环氧/GO样品,开发出具有改善机械性能的环氧/GO复合材料。为此,基于田口实验设计方法((33)正交阵列)合成了九种环氧/GO复合材料,随后进行拉伸强度测试。使用田口方法,分别确定了GO含量、氧化程度和均质化时间的最佳值为0.25 wt%、6 g和150分钟。与纯环氧树脂的拉伸强度(约38 MPa)相比,最佳复合材料获得的73 MPa的优异拉伸强度显示出令人印象深刻的92%的提升。此外,方差分析表明,在提高环氧/GO复合材料的拉伸强度方面,GO的含量比其他参数起主要作用。最后,应用非线性回归分析开发了一个半经验二次模型来预测复合材料的拉伸强度。在最佳条件下,R值为99.55%,平均绝对相对偏差(AARD)可忽略不计,为1.13%,这意味着所开发模型在设计空间内具有最高的准确性。