Suppr超能文献

高压和高温条件下湿态超临界二氧化碳对储层和盖层地层的反应性:对碳捕获与封存及基于二氧化碳的地热能开采的意义

Reactivity of Wet scCO toward Reservoir and Caprock Formations under Elevated Pressure and Temperature Conditions: Implications for CCS and CO-Based Geothermal Energy Extraction.

作者信息

Rangel-Jurado Nicolás, Kong Xiang-Zhao, Kottsova Anna, Grafulha Morales Luiz, Ma Ning, Games Federico, Brehme Maren, Bernasconi Stefano M, Saar Martin O

机构信息

Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.

Computational Geoscience, Geothermics, and Reservoir Geophysics, RWTH Aachen, Aachen 52074, Germany.

出版信息

Energy Fuels. 2025 Jan 8;39(3):1679-1693. doi: 10.1021/acs.energyfuels.4c04515. eCollection 2025 Jan 23.

Abstract

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike. We address this knowledge gap by conducting core-scale laboratory experiments, focusing on the chemical reactivity of water-bearing supercritical CO (wet scCO) with reservoir and caprock lithologies and simulating deep reservoir conditions (35 MPa, 150 °C). Employing a suite of high-resolution analytical techniques, we characterize the evolution of morphological and compositional properties, shedding light on the ion transport and mineral dissolution processes, caused by both the aqueous and nonaqueous phases. Our results show that fluid-mineral interactions involving wet scCO are significantly less severe than those caused by equivalent CO-bearing aqueous solutions. Nonetheless, our experiments reveal that wet scCO can induce mineral dissolution reactions upon contact with dolomite. This dissolution appears limited, incongruent, and self-sealing, characterized by preferential leaching of calcium over magnesium ions, leading to supersaturation of the scCO phase and reprecipitation of secondary carbonates. The markedly differing quantities of Ca and Mg ions transported by wet scCO streams provide clear evidence of the nonstoichiometric dissolution of dolomite. More importantly, this finding represents the first reported observation of ion transport processes driven by water continuously dissolved in the scCO phase, which challenges prevailing views on the chemical reactivity of this fluid and highlights the need for further investigation. A comprehensive understanding of the chemical behavior of CO-rich supercritical fluids is critical for ensuring the feasibility and security of deep geological CO storage and CO-based geothermal energy.

摘要

碳捕获与封存(CCS)以及基于CO的地热能是减少CO排放和缓解气候变化的有前景的技术。这些技术的安全实施需要了解CO在深部如何与流体和岩石相互作用,特别是在高压和高温条件下。虽然地质储层中含CO的水溶液已得到广泛研究,但含水超临界CO的化学行为在很大程度上仍被学术界和从业者忽视。我们通过进行岩心尺度的实验室实验来填补这一知识空白,重点研究含水超临界CO(湿scCO)与储层和盖层岩性的化学反应性,并模拟深部储层条件(35兆帕,150℃)。我们采用一系列高分辨率分析技术,对形态和成分特性的演变进行表征,揭示由水相和非水相引起的离子传输和矿物溶解过程。我们的结果表明,涉及湿scCO的流体 - 矿物相互作用明显不如等效的含CO水溶液引起的相互作用严重。尽管如此,我们的实验表明,湿scCO与白云石接触时可引发矿物溶解反应。这种溶解似乎是有限的、不一致的且自封闭的,其特征是钙离子比镁离子优先浸出,导致scCO相过饱和并二次碳酸盐再沉淀。湿scCO流传输的Ca和Mg离子数量明显不同,这为白云石的非化学计量溶解提供了明确证据。更重要的是,这一发现代表了首次报道的由连续溶解在scCO相中的水驱动的离子传输过程的观察结果,这挑战了关于这种流体化学反应性的主流观点,并强调了进一步研究的必要性。全面了解富含CO的超临界流体的化学行为对于确保深部地质CO封存和基于CO的地热能的可行性和安全性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49be/11770833/885adde10d57/ef4c04515_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验