Suppr超能文献

MutualDTA:一种利用预训练模型和相互注意力机制的可解释药物-靶点亲和力预测模型

MutualDTA: An Interpretable Drug-Target Affinity Prediction Model Leveraging Pretrained Models and Mutual Attention.

作者信息

Yuan Yongna, Chen Siming, Hu Rizhen, Wang Xin

机构信息

School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China.

出版信息

J Chem Inf Model. 2025 Feb 10;65(3):1211-1227. doi: 10.1021/acs.jcim.4c01893. Epub 2025 Jan 29.

Abstract

Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding. To overcome the above-mentioned problems, we propose an interpretable deep learning model called MutualDTA for predicting DTA. MutualDTA leverages the power of pretrained models to obtain accurate representations of drugs and targets. It also employs well-designed modules to extract hidden features from these representations. Furthermore, the interpretability of MutualDTA is realized by the Mutual-Attention module, which (i) establishes relationships between drugs and proteins from the perspective of intermolecular interactions between drug atoms and protein amino acid residues and (ii) allows MutualDTA to capture the binding sites based on attention scores. The test results on two benchmark data sets show that MutualDTA achieves the best performance compared to the 12 state-of-the-art models. Attention visualization experiments show that MutualDTA can capture partial interaction sites, which not only helps drug developers reduce the search space for binding sites, but also demonstrates the interpretability of MutualDTA. Finally, the trained MutualDTA is applied to screen high-affinity drug screens targeting Alzheimer's disease (AD)-related proteins, and the screened drugs are partially present in the anti-AD drug library. These results demonstrate the reliability of MutualDTA in drug development.

摘要

高效且准确的药物-靶点亲和力(DTA)预测能够显著加速药物研发进程。近年来,深度学习模型已被广泛应用于DTA预测并取得了显著成效。然而,现有方法常常面临几个常见问题:其一,数据表示缺乏足够信息;其二,提取的特征不够全面;其三,大多数方法在对药物-靶点结合进行建模时缺乏可解释性。为克服上述问题,我们提出了一种名为MutualDTA的可解释深度学习模型用于预测DTA。MutualDTA利用预训练模型的能力来获得药物和靶点的准确表示。它还采用精心设计的模块从这些表示中提取隐藏特征。此外,MutualDTA的可解释性通过相互注意力模块实现,该模块(i)从药物原子与蛋白质氨基酸残基之间的分子间相互作用角度建立药物与蛋白质之间的关系,以及(ii)允许MutualDTA基于注意力分数捕获结合位点。在两个基准数据集上的测试结果表明,与12个最先进的模型相比,MutualDTA取得了最佳性能。注意力可视化实验表明,MutualDTA能够捕获部分相互作用位点,这不仅有助于药物研发人员缩小结合位点的搜索空间,还证明了MutualDTA的可解释性。最后,将训练好的MutualDTA应用于筛选针对阿尔茨海默病(AD)相关蛋白的高亲和力药物筛选,筛选出的药物部分存在于抗AD药物库中。这些结果证明了MutualDTA在药物研发中的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验