Schöllkopf Aline I, Almeida Luciana, Krammer Karina, Rivero Cristina González, Liebl Wolfgang, Ehrenreich Armin
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
Current address: Max Von Pettenkofer-Institut, Pettenkoferstraße 9A, Munich, Germany.
Appl Microbiol Biotechnol. 2025 Jan 29;109(1):31. doi: 10.1007/s00253-025-13404-6.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C. cellulovorans. The availability of reporter genes is another requirement for strain engineering and biotechnological applications. In this work, the oxygen-free fluorescence absorption-shift tag (FAST) system was used to characterize promoter strength in C. cellulovorans. Selected promoters were used to establish a CRISPR/Cas system for markerless chromosomal modifications. For stringent control of expression of Cas9, a theophylline-dependent riboswitch was used, and additionally, the anti-CRISPR protein AcrIIA4 was used to reduce the basal activity of the Cas9 in the off-state of the riboswitch. Finally, the newly established CRISPR/Cas system was used for the markerless deletion of the genes encoding two restriction endonucleases of a type II restriction-modification (RS) system from the chromosome of C. cellulovorans. In comparison to the WT, the conjugation efficiency when using the deletion mutant as the recipient strain was improved by about one order of magnitude, without the need for prior C. cellulovorans-specific in vivo methylation of the conjugative plasmid in the E. coli donor strain. KEY POINTS: • Quantification of heterologous promoters enables rational choice for genetic engineering. • CRISPR/Cas with riboswitch and anti-CRISPR allows efficient gene deletion in C. cellulovorans. • Conjugation protocol and type II REase deletion enhance genetic accessibility.
厌氧细菌纤维分解梭菌由于其纤维素分解特性,是可持续生产生物燃料和平台化学品的有前景的候选菌株。然而,由于其遗传可操作性差和缺乏遗传工具,该物种的基因组工程受到阻碍。为克服这一限制,建立了一种三亲本接合方案,该方案能够将用于无标记染色体修饰的载体可靠地转移到纤维分解梭菌中。报告基因的可用性是菌株工程和生物技术应用的另一项要求。在这项工作中,无氧荧光吸收位移标签(FAST)系统用于表征纤维分解梭菌中的启动子强度。选择的启动子用于建立用于无标记染色体修饰的CRISPR/Cas系统。为严格控制Cas9的表达,使用了茶碱依赖性核糖开关,此外,还使用了抗CRISPR蛋白AcrIIA4来降低核糖开关关闭状态下Cas9的基础活性。最后,新建立的CRISPR/Cas系统用于从纤维分解梭菌染色体上无标记删除编码II型限制修饰(RS)系统的两种限制内切酶的基因。与野生型相比,使用缺失突变体作为受体菌株时的接合效率提高了约一个数量级,而无需事先在大肠杆菌供体菌株中对接合质粒进行纤维分解梭菌特异性的体内甲基化。要点:• 异源启动子的定量分析有助于基因工程的合理选择。• 带有核糖开关和抗CRISPR的CRISPR/Cas系统可实现纤维分解梭菌中的高效基因删除。• 接合方案和II型限制内切酶删除增强了遗传可操作性。