Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
Commun Biol. 2022 Mar 25;5(1):265. doi: 10.1038/s42003-022-03150-0.
The fast-growing bacterium Vibrio natriegens has recently gained increasing attention as a novel chassis organism for fundamental research and biotechnology. To fully harness the potential of this bacterium, highly efficient genome editing methods are indispensable to create strains tailored for specific applications. V. natriegens is able to take up free DNA and incorporate it into its genome by homologous recombination. This highly efficient natural transformation is able to mediate uptake of multiple DNA fragments, thereby allowing for multiple simultaneous edits. Here, we describe NT-CRISPR, a combination of natural transformation with CRISPR-Cas9 counterselection. In two temporally distinct steps, we first performed a genome edit by natural transformation and second, induced CRISPR-Cas9 targeting the wild type sequence, and thus leading to death of non-edited cells. Through cell killing with efficiencies of up to 99.999%, integration of antibiotic resistance markers became dispensable, enabling scarless and markerless edits with single-base precision. We used NT-CRISPR for deletions, integrations and single-base modifications with editing efficiencies of up to 100%. Further, we confirmed its applicability for simultaneous deletion of multiple chromosomal regions. Lastly, we showed that the near PAM-less Cas9 variant SpG Cas9 is compatible with NT-CRISPR and thereby broadens the target spectrum.
耐盐威克氏菌(Vibrio natriegens)是一种快速生长的细菌,最近作为基础研究和生物技术的新型底盘生物受到越来越多的关注。为了充分利用这种细菌的潜力,高效的基因组编辑方法对于创建针对特定应用的菌株是必不可少的。耐盐威克氏菌能够通过同源重组摄取游离 DNA 并将其整合到基因组中。这种高效的自然转化能够介导多个 DNA 片段的摄取,从而允许同时进行多次编辑。在这里,我们描述了 NT-CRISPR,这是一种将自然转化与 CRISPR-Cas9 反选择相结合的方法。在两个不同的时间步骤中,我们首先通过自然转化进行基因组编辑,然后诱导针对野生型序列的 CRISPR-Cas9 靶向,从而导致未编辑细胞死亡。通过高达 99.999%的细胞杀伤效率,抗生素抗性标记物的整合变得可有可无,从而实现了具有单碱基精度的无痕和无标记编辑。我们使用 NT-CRISPR 进行了高达 100%的编辑效率的缺失、插入和单碱基修饰。此外,我们证实了其在同时删除多个染色体区域方面的适用性。最后,我们表明,近无 PAM 的 Cas9 变体 SpG Cas9 与 NT-CRISPR 兼容,从而拓宽了靶标谱。