Septembre I, Leblanc C, Solnyshkov D D, Malpuech G
Clermont INP, Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France.
CEA, Grenoble, Minatec Campus, Leti, 38054, France.
Phys Rev Lett. 2024 Dec 31;133(26):266602. doi: 10.1103/PhysRevLett.133.266602.
The combination of an in-plane honeycomb potential and of a photonic spin-orbit coupling (SOC) emulates a photonic or polaritonic analog of bilayer graphene. We show that modulating the SOC magnitude allows us to change the overall lattice periodicity, emulating any type of moiré-arranged bilayer graphene with unique all-optical access to the moiré band topology. We show that breaking the time-reversal symmetry by an effective exciton-polariton Zeeman splitting opens a large topological gap in the array of moiré flat bands. This gap contains one-way topological edge states whose constant group velocity makes an increasingly sharp contrast with the flattening moiré bands.
面内蜂窝势与光子自旋轨道耦合(SOC)相结合,模拟了双层石墨烯的光子或极化激元类似物。我们表明,调制SOC强度使我们能够改变整体晶格周期性,从而模拟任何类型的具有独特全光访问莫尔带拓扑结构的莫尔排列双层石墨烯。我们还表明,通过有效的激子极化激元塞曼分裂打破时间反演对称性,会在莫尔平带阵列中打开一个大的拓扑间隙。这个间隙包含单向拓扑边缘态,其恒定的群速度与扁平化的莫尔带形成了越来越明显的对比。